Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches

José M. Bioucas‐Dias1, Antonio Plaza2, Nicolas Dobigeon3,4, M. Parente5, Qian Du6, Paul Gader7,8, Jocelyn Chanussot9
1Instituto de Telecomunicações [Lisboa, Portugal] (Instituto Superior Técnico - Torre Norte - Piso 10 Av. Rovisco Pais, 1 1049 - 001 Lisboa - Portugal - Portugal)
2Hyperspectral Computing Laboratory (Caceres, Spain) (Spain)
3IRIT-SC - Signal et Communications (IRIT 2 rue Charles Camichel 31071 Toulouse Cedex 7 - France)
4Toulouse INP - Institut National Polytechnique (Toulouse) (France)
5ECE - Department of Electrical and Computer Engineering - University of Massachusetts (100 Natural Resources Rd Marcus Hall 8 Amherst, MA 01003 - United States)
6Department of Electrical and Computer Engineering (Mississipi State, USA) (United States)
7GIPSA-lab - Grenoble Images Parole Signal Automatique (GIPSA-lab 11 rue des Mathématiques, Grenoble Campus BP46 F-38402 SAINT MARTIN D'HERES CEDEX - France)
8UF|CISE - Department of Computer and Information Science and Engineering [Gainesville] (University of Florida, E301 CSE Building, Gainesville, FL 32611 - United States)
9GIPSA-SIGMAPHY - GIPSA - Signal Images Physique (GIPSA-lab, 11 rue des Mathématiques, Grenoble Campus BP46, F-38402 SAINT MARTIN D'HERES CEDEX - France)

Tóm tắt

Từ khóa


Tài liệu tham khảo

bioucas-dias, 2012, Hyperspectral unmixing based on mixtures of Dirichlet components, IEEE Trans Geosci Remote Sens, 50, 863, 10.1109/TGRS.2011.2163941

vikneswaran, 2011, Techniques of Parallelization in Markov Chain Monte Carlo Methods

zare, 2010, An investigation of likelihoods and priors for bayesian endmember estimation, Proc Int Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering

10.1109/TGRS.2006.881123

10.1109/TGRS.2010.2098413

10.1002/cpa.20124

10.1109/WHISPERS.2010.5594888

efron, 2004, Least angle regression, The Annals of Statistics, 32, 407, 10.1214/009053604000000067

10.1109/MSP.2007.4286571

10.1109/ICASSP.2008.4518389

10.1109/IGARSS.2007.4423734

10.1117/12.410362

10.1016/j.eswa.2011.04.086

10.1016/0034-4257(94)90107-4

10.1029/JB089iB07p06329

10.1029/JB086iB04p03039

singer, 1979, Mars: Large scale mixing of bright and dark surface materials and implications for analysis of spectral reflectance, Proc 15th Lunar and Planetary Science Conf, 1835

10.1109/TGRS.2003.820314

parente, 2010, Survey of geometric and statistical unmixing algorithms for hyperspectral images, Proc IEEE GRSS Workshop Hyperspectral Image Signal Process Evolution in Remote Sens (WHISPERS), 1

10.1007/978-3-642-14212-3_12

bioucas-dias, 2010, Hyperspectral unmixing: Geometrical, statistical, and sparse regression-based approaches, Proc SPIE Image and Signal Processing and Remote Sensing XVI, 7830, 1

10.1109/ACSSC.1993.342465

10.1109/78.258082

guo, 2009, L1 unmixing and its application to hyperspectral image enhancement, SPIE Proc Algorithms and Technologies for Multispectral Hyperspectral and Ultraspectral Imagery VIII, 1, 1

10.1109/WHISPERS.2010.5594963

10.1137/S0097539792240406

10.1073/pnas.0437847100

10.1109/TSP.2006.881199

10.1109/TIP.2006.881969

10.1109/TIT.2008.929920

10.1088/0266-5611/23/3/008

10.1017/CBO9780511524998

10.1016/j.forsciint.2008.04.020

10.1137/S003614450037906X

10.1117/12.331889

10.1016/j.jpba.2008.08.014

10.1021/ac902569e

10.1002/9783527628230.ch2

10.1109/TBME.2010.2049110

10.1109/TMI.2009.2015145

10.1109/JSEN.2009.2038120

10.1109/TII.2009.2031238

10.1006/icar.1998.6035

10.1080/05704928.2010.537004

10.1016/0165-1684(94)90029-9

10.1109/WHISPERS.2010.5594897

chen, 1999, Independent component analysis for remote sensing study, Proc SPIE Image and Signal Processing and Remote Sensing V, 3871, 150, 10.1117/12.373252

bayliss, 1997, Analysing hyperspectral data with independent component analysis, Proc SPIE, 3240, 133, 10.1117/12.300050

10.1109/WHISPERS.2010.5594866

10.1109/TGRS.2010.2041062

zare, 2010, A comparison of deterministic and probabilistic approaches to endmember representation, Proc IEEE GRSS Workshop Hyperspectral Image Signal Process Evolution in Remote Sens (WHISPERS), 1

10.1109/TGRS.2011.2144605

lee, 2001, Algorithms for non-negative matrix factorization, Advances in neural information processing systems, 556562

10.1109/36.752192

10.1109/FUZZY.2011.6007622

10.1016/j.rse.2009.02.003

10.1109/LGRS.2010.2049334

10.1109/WHISPERS.2011.6080881

10.1109/WHISPERS.2010.5594962

10.1109/WHISPERS.2009.5289073

broadwater, 2011, Optical Remote Sensing Advances in Signal Processing and Exploitation, 247

10.1109/IGARSS.2007.4423736

10.1109/WHISPERS.2010.5594898

10.1109/36.739139

10.1109/TGRS.2010.2062190

10.1016/j.neucom.2007.07.034

10.1109/TSP.2006.880310

10.1007/s11265-010-0533-2

10.1109/TSP.2009.2025797

10.1016/j.sigpro.2009.05.005

10.1016/j.chemolab.2005.11.004

parra, 2000, Unmixing hyperspectral data, Proc Adv Neural Inf Process Syst (NIPS), 12, 942

gillespie, 1990, Interpretation of residual images: Spectral mixture analysis of AVIRIS images, Owens Valley, California, Proc 2nd AVIRIS Workshop, 9054, 243

10.1029/JB091iB08p08098

swayze, 1992, Ground-truthing AVIRIS mineral mapping at Cuprite, Nevada, Proc JPL Airborne Earth Sci Workshop, 47

10.1016/0034-4257(93)90012-M

10.1109/79.974715

bernardo, 1994, Bayesian Theory, 10.1002/9780470316870

10.1016/S0034-4257(98)00064-9

kulbelka, 1931, Reflection characteristics of paints, Zeitschrift fur Technische Physik, 12, 593

10.1117/1.602461

10.1109/79.974718

10.1109/TGRS.2004.839806

10.1109/36.673681

10.1109/36.298007

chandrasekhar, 1960, Radiative Transfer

10.1109/IGARSS.1999.774644

10.1109/36.508422

10.1109/36.739132

yuhas, 1992, Discrimination among semi-arid landscape endmembers using the spectral angle mapper (SAM) algorithm, Proc Ann JPL Airborne Geosci Workshop, 1, 147

10.1016/0034-4257(88)90012-0

winter, 1999, N-FINDR: An algorithm for fast autonomous spectral endmember determination in hyperspectral data, Proc SPIE Image Spectrometry V, 3753, 266, 10.1117/12.366289

10.1109/JSTSP.2010.2088377

10.1109/TIP.2012.2187668

10.1109/LGRS.2011.2172185

close, 2011, Endmember and Proportion Estimation Using Physics-Based Macroscopic and Microscopic Mixture Models

10.1029/JB092iB04p0E617

10.1109/LGRS.2011.2177241

close, 2012, Hyperspectral endmember and proportion estimation using macroscopic and microscopic mixture models, IEEE Trans Geosci Remote Sens

10.1109/TIT.2005.862083

10.1109/TIT.2006.871582

10.1080/01431160802558659

10.1109/TGRS.2010.2098414

nascimento, 2009, Nonlinear mixture model for hyperspectral unmixing, Proc SPIE Image and Signal Process for Remote Sensing XV, 7477, 10.1117/12.830492

10.1109/WHISPERS.2011.6080928

10.1109/36.957296

10.1016/j.rse.2004.09.004

10.1016/j.patcog.2009.04.008

10.1109/LGRS.2009.2036139

10.1109/IGARSS.2011.6049401

10.1109/TGRS.2011.2160950

10.1109/TGRS.2010.2060550

10.1109/TGRS.2010.2097268

10.1109/34.6774

10.1109/LGRS.2010.2047711

10.1109/TGRS.2010.2062526

li, 2012, Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression andMarkov random fields, IEEE Trans Geosci Remote Sens, 1

10.1109/TGRS.2011.2128330

10.1109/TAC.1974.1100705

10.1016/0005-1098(78)90005-5

10.1109/JSTSP.2011.2149497

10.1214/aos/1176344136

10.1109/TGRS.2008.922034

keshava, 2003, A survey of spectral unmixing algorithms, Lincoln Lab J, 14, 55

10.1109/TGRS.2009.2016214

10.1117/12.283841

10.1109/36.54356

harsanyi, 1993, Determining the number and identity of spectral endmembers: An integrated approach using Neyman-Pearson eigenthresholding and iterative constrained RMS error minimization, Proc Thematic Conf Geologic Remote Sens, 1, 1

10.1109/34.682189

10.1109/TGRS.2003.819189

10.1109/TASSP.1985.1164557

perczel, 1989, Convex constraint decomposition of circular dichroism curves of proteins, Croatica Chim Acta, 62, 189

10.1109/36.297973

bertero, 1997, Introduction to Inverse Problems in Imaging

10.1109/TGRS.2008.918089

10.1038/381607a0

10.1109/36.3001

10.1109/TGRS.2006.864389

10.1117/12.478755

jolliffe, 1986, Principal Component Analysis, 10.1007/978-1-4757-1904-8

scharf, 1991, Statistical Signal Processing Detection Estimation and Time Series Analysis

10.1109/TGRS.2011.2140119

10.1117/12.454150

10.1109/72.554199

10.1016/j.rse.2007.02.019

jia, 2007, Spectral and spatial complexity-based hyperspectral unmixing, IEEE Trans Geosci Remote Sens, 45, 3867, 10.1109/TGRS.2007.898443

10.1109/IGARSS.2011.6049398

10.1109/TSP.2008.917851

10.1109/TSP.2011.2180718

10.1109/WHISPERS.2010.5594915

10.1109/TGRS.2002.802494

10.1109/WHISPERS.2010.5594897

10.1109/FUZZY.2011.6007622

10.1016/0167-2789(92)90242-F

10.1109/TGRS.2009.2014945

zymnis, 2007, Hyperspectral image unmixing via alternating projected subgradients, Proc IEEE Asilomar Conf Signals Systems and Computers, 1164

10.1109/WHISPERS.2011.6080882

10.1109/TGRS.2012.2191590

iordache, 2012, Collaborative hierarchical sparse unmixing of hyperspectral data, Proc IEEE Int Conf Geosci Remote Sens (IGARSS)

10.1109/TSP.2011.2157912

10.1109/MSP.2011.940409

plaza, 2007, High Performance Computing in Remote Sensing, 10.1201/9781420011616

10.1002/cpe.1555

10.1109/TGRS.2011.2171693

10.1109/JSTARS.2011.2171673

10.1002/cpe.1720

10.1109/JSTARS.2011.2162643

wu, 2008, Sequential n-findr algorithms, Proc SPIE, 7086, 10.1117/12.795262

10.1109/TGRS.2011.2141672

gruninger, 2004, The sequential maximum angle convex cone (SMACC) endmember model, Proc SPIE, 5425, 1, 10.1117/12.543794

10.1109/TGRS.2006.881803

10.1016/j.neucom.2008.06.025

moller, 2010, A Convex Model for Matrix Factorization and Dimensionality Reduction on Physical Space and its Application to Blind Hyperspectral Unmixing

10.1016/j.ins.2010.03.022

10.1109/WHISPERS.2009.5289072

10.1109/TSP.2009.2025802

10.1016/j.neucom.2008.06.026

10.1109/IGARSS.2008.4779330

10.1109/TGRS.2006.888466

10.1109/TGRS.2011.2151197

10.1109/MLSP.2009.5306262

10.1109/TGRS.2004.835299

arngren, 2007, Modelling Cognitive Representations

10.1007/s11265-010-0533-2

10.1109/IGARSS.2012.6350775

10.1109/LGRS.2007.895727

zare, 2010, Robust endmember detection using l1 norm factorization, Proc IEEE Int Conf Geosci Remote Sens (IGARSS), 971

10.1029/JB090iS02p0C797

10.1109/TGRS.2011.2155070

10.1109/79.974727

10.1109/TGRS.2010.2072931

10.1109/IGARSS.2001.978197

10.1109/TGRS.2005.863297

10.1109/LGRS.2006.888105

10.1117/12.603660

yangchi, 2005, Applying nonlinear manifold learning to hyperspectral data for land cover classification, Proc IEEE Int Conf Geosci Remote Sens (IGARSS), 6, 4311

10.1109/TGRS.2004.842292

10.1109/TGRS.2006.881801

10.1109/CNE.2003.1196824

10.1080/01431160050121339

10.1109/TGRS.2005.860982

10.1109/36.885200

10.1109/79.974724

10.1109/79.974730

10.1016/j.rse.2007.07.028

10.1016/j.rse.2009.03.001

10.1255/jnirs.754

10.1016/j.tifs.2007.06.001

10.1016/j.biosystemseng.2008.05.017

10.1016/j.rse.2005.01.002

10.1007/978-3-642-02230-2_57

boardman, 1994, Automated spectral analysis: A geological example using AVIRIS data, northern grapevine mountains, Nevada, Proc Thematic Conf Geologic Remote Sens, 1, 1

kim, 2001, Hyperspectral reflectance and fluorescence imaging system for food quality and safety, Trans the Am Soc Agricultural Eng, 44, 721

10.1016/j.aca.2005.06.018

10.1109/TSP.2009.2025802

10.1109/TIP.2007.901238

10.1109/TGRS.2003.810712

kruse, 1998, Spectral identification of image endmembers determined from AVIRIS data, Proc JPL Airborne Earth Sci Workshop, 1, 1

10.1109/36.841987

boardman, 1993, Automating spectral unmixing of AVIRIS data using convex geometry concepts, Proc Ann JPL Airborne Geosci Workshop, 1, 11

boardman, 1995, Mapping target signatures via partial unmixing of AVIRIS data, Proc JPL Airborne Earth Sci Workshop, 23

neville, 1999, Automatic endmember extraction from hyperspectral data for mineral exploration, Proc Canadian Symp Remote Sens, 21

10.1109/TGRS.2005.844293