Hyperspectral Imaging for Clinical Applications
Tóm tắt
Từ khóa
Tài liệu tham khảo
Waterhouse, D.J., Fitzpatrick, C.R., Pogue, B.W., O’Connor, J.P., Bohndiek, S.E.: A roadmap for the clinical implementation of optical-imaging biomarkers. Nat. Biomed. Eng. 3, 339–353 (2019)
Prati, F., et al.: Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis. Eur. Heart J. 31, 401–415 (2010)
Jung, J., et al.: Biomedical applications of holographic microspectroscopy. Appl. Opt. 53, G111–G122 (2014)
Park, Y., Depeursinge, C., Popescu, G.: Quantitative phase imaging in biomedicine. Nat. Photonics 12, 578–589 (2018)
Wang, L.V., Yao, J.: A practical guide to photoacoustic tomography in the life sciences. Nat. Methods 13, 627–638 (2016)
Luke, G.P., Yeager, D., Emelianov, S.Y.: Biomedical applications of photoacoustic imaging with exogenous contrast agents. Ann. Biomed. Eng. 40, 422–437 (2012)
Clancy, N.T., Jones, G., Maier-Hein, L., Elson, D.S., Stoyanov, D.: Surgical spectral imaging. Med. Image Anal. 63, 101699 (2020)
Van der Meer, F.D., et al.: Multi-and hyperspectral geologic remote sensing: a review. Int. J. Appl. Earth Obs. Geoinf. 14, 112–128 (2012)
Feng, Y.-Z., Sun, D.-W.: Application of hyperspectral imaging in food safety inspection and control: a review. Crit. Rev. Food Sci. Nutr. 52, 1039–1058 (2012)
Singh, N., et al.: Recycling of plastic solid waste: a state of art review and future applications. Compos. B Eng. 115, 409–422 (2017)
Edelman, G., Gaston, E., Van Leeuwen, T., Cullen, P., Aalders, M.: Hyperspectral imaging for non-contact analysis of forensic traces. Forensic Sci. Int. 223, 28–39 (2012)
Polak, A., et al.: Hyperspectral imaging combined with data classification techniques as an aid for artwork authentication. J. Cult. Herit. 26, 1–11 (2017)
Vo-Dinh, T.: A hyperspectral imaging system for in vivo optical diagnostics. IEEE Eng. Med. Biol. Mag. 23, 40–49 (2004)
Martin, M.E., et al.: Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection. Ann. Biomed. Eng. 34, 1061–1068 (2006)
Johnson, W.R., Wilson, D.W., Fink, W., Humayun, M.S., Bearman, G.H.: Snapshot hyperspectral imaging in ophthalmology. J. Biomed. Opt. 12, 014036 (2007)
Goto, A., et al.: Use of hyperspectral imaging technology to develop a diagnostic support system for gastric cancer. J. Biomed. Opt. 20, 016017 (2015)
Fei, B., et al.: Label-free reflectance hyperspectral imaging for tumor margin assessment: a pilot study on surgical specimens of cancer patients. J. Biomed. Opt. 22, 086009 (2017)
Blacker, T.S., Duchen, M.R.: Investigating mitochondrial redox state using NADH and NADPH autofluorescence. Free Radic. Biol. Med. 100, 53–65 (2016)
Bartolomé, F., Abramov, A.Y.: Measurement of mitochondrial NADH and FAD autofluorescence in live cells. Mitochondrial Med. 1264, 263–270 (2015)
Yu, H., et al.: Recent advances in wavefront shaping techniques for biomedical applications. Curr. Appl. Phys. 15, 632–641 (2015)
Collier, T., Arifler, D., Malpica, A., Follen, M., Richards-Kortum, R.: Determination of epithelial tissue scattering coefficient using confocal microscopy. IEEE J. Sel. Top. Quantum Electron. 9, 307–313 (2003)
Nandy, S., et al.: Characterizing optical properties and spatial heterogeneity of human ovarian tissue using spatial frequency domain imaging. J. Biomed. Opt. 21, 101402 (2016)
Volynskaya, Z.I., et al.: Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy. J. Biomed. Opt. 13, 024012 (2008)
Favreau, P.F., et al.: Excitation-scanning hyperspectral imaging microscope. J. Biomed. Opt. 19, 046010 (2014)
Sheoran, G., Dubey, S., Anand, A., Mehta, D.S., Shakher, C.: Swept-source digital holography to reconstruct tomographic images. Opt. Lett. 34, 1879–1881 (2009)
Castellanos-Gomez, A., Quereda, J., van der Meulen, H.P., Agraït, N., Rubio-Bollinger, G.: Spatially resolved optical absorption spectroscopy of single-and few-layer MoS2 by hyperspectral imaging. Nanotechnology 27, 115705 (2016)
Torabzadeh, M., et al.: Hyperspectral imaging in the spatial frequency domain with a supercontinuum source. J. Biomed. Opt. 24, 071614 (2019)
Wood, T.C., Elson, D.S.: A tunable supercontinuum laser using a digital micromirror device. Meas. Sci. Technol. 23, 105204 (2012)
Islam, K., Ploschner, M., Goldys, E.M.: Multi-LED light source for hyperspectral imaging. Opt. Express 25, 32659–32668 (2017)
Wang, H., et al.: An active hyperspectral imaging system based on a multi-LED light source. Rev. Sci. Instrum. 90, 026107 (2019)
Keller, M.D., et al.: Autofluorescence and diffuse reflectance spectroscopy and spectral imaging for breast surgical margin analysis. Lasers Surg. Med. 42, 15–23 (2010). https://doi.org/10.1002/lsm.20865
Wirth, D., et al.: Hyperspectral imaging and spectral unmixing for improving whole-body fluorescence cryo-imaging. Biomed. Opt. Express 12, 395–408 (2021)
Zhang, C., et al.: Narrowband double-filtering hyperspectral imaging based on a single AOTF. Opt. Lett. 43, 2126–2129 (2018)
Yushkov, K.B., Champagne, J., Kastelik, J.-C., Makarov, O.Y., Molchanov, V.Y.: AOTF-based hyperspectral imaging phase microscopy. Biomed. Opt. Express 11, 7053–7061 (2020)
Abdo, M., Badilita, V., Korvink, J.: Spatial scanning hyperspectral imaging combining a rotating slit with a Dove prism. Opt. Express 27, 20290–20304 (2019)
Luthman, A.S., Dumitru, S., Quiros-Gonzalez, I., Joseph, J., Bohndiek, S.E.: Fluorescence hyperspectral imaging (fHSI) using a spectrally resolved detector array. J. Biophotonics 10, 840–853 (2017)
Renhorn, I.G., Bergström, D., Hedborg, J., Letalick, D., Möller, S.: High spatial resolution hyperspectral camera based on a linear variable filter. Opt. Eng. 55, 114105 (2016)
Yoon, J., et al.: A clinically translatable hyperspectral endoscopy (HySE) system for imaging the gastrointestinal tract. Nat. Commun. 10, 1–13 (2019)
Johnson, W.R., Wilson, D.W., Fink, W., Humayun, M., Bearman, G.: Snapshot hyperspectral imaging in ophthalmology. J Biomed Opt 12, 014036 (2007). https://doi.org/10.1117/1.2434950
Hagen, N.A., Kudenov, M.W.: Review of snapshot spectral imaging technologies. Opt. Eng. 52, 090901 (2013)
Williams, C., Gordon, G.S.D., Wilkinson, T.D., Bohndiek, S.E.: Grayscale-to-color: scalable fabrication of custom multispectral filter arrays. ACS Photonics 6, 3132–3141 (2019). https://doi.org/10.1021/acsphotonics.9b01196
Wang, Z., et al.: Single-shot on-chip spectral sensors based on photonic crystal slabs. Nat. Commun. 10, 1020 (2019). https://doi.org/10.1038/s41467-019-08994-5
Sahoo, S.K., Tang, D., Dang, C.: Single-shot multispectral imaging with a monochromatic camera. Optica 4, 1209–1213 (2017)
Park, J., Feng, X., Liang, R., Gao, L.: Snapshot multidimensional photography through active optical mapping. Nat. Commun. 11, 1–13 (2020)
Pawlowski, M.E., Dwight, J.G., Nguyen, T.-U., Tkaczyk, T.S.: High performance image mapping spectrometer (IMS) for snapshot hyperspectral imaging applications. Opt. Express 27, 1597–1612 (2019)
Hedde, P.N., Cinco, R., Malacrida, L., Kamaid, A., Gratton, E.: Phasor-based hyperspectral snapshot microscopy allows fast imaging of live, three-dimensional tissues for biomedical applications. Commun. Biol. 4, 1–11 (2021)
Khan, M.J., Khan, H.S., Yousaf, A., Khurshid, K., Abbas, A.: Modern trends in hyperspectral image analysis: a review. IEEE Access 6, 14118–14129 (2018)
Paoletti, M., Haut, J., Plaza, J., Plaza, A.: Deep learning classifiers for hyperspectral imaging: a review. ISPRS J. Photogramm. Remote Sens. 158, 279–317 (2019)
Trajanovski, S., Shan, C., Weijtmans, P.J., de Koning, S.G.B., Ruers, T.J.: Tongue tumor detection in hyperspectral images using deep learning semantic segmentation. IEEE Trans. Biomed. Eng. 68, 1330–1340 (2020)
Yun, B., et al.: SpecTr: spectral transformer for hyperspectral pathology image segmentation (2021). arXiv:2103.03604
Grigoroiu, A., Yoon, J., Bohndiek, S.E.: Deep learning applied to hyperspectral endoscopy for online spectral classification. Sci. Rep. 10, 1–10 (2020)
Manni, F., et al.: Hyperspectral imaging for glioblastoma surgery: Improving tumor identification using a deep spectral-spatial approach. Sensors 20, 6955 (2020)
Fabelo, H., et al.: Deep learning-based framework for in vivo identification of glioblastoma tumor using hyperspectral images of human brain. Sensors 19, 920 (2019)
Waterhouse, D.J., et al.: Spectral endoscopy enhances contrast for neoplasia in surveillance of Barrett’s esophagus. Cancer Res. 81, 3415–3425 (2021)
Ortac, G., Ozcan, G.: Comparative study of hyperspectral image classification by multidimensional convolutional neural network approaches to improve accuracy. Expert Syst. Appl. 182, 115280 (2021)
Chen, L., et al.: MRI tumor segmentation with densely connected 3D CNN. Medical Imaging 2018: Image Processing, vol. 105741F, Houston, Texas, US (2018)
Ker, J., et al.: Image thresholding improves 3-dimensional convolutional neural network diagnosis of different acute brain hemorrhages on computed tomography scans. Sensors 19, 2167 (2019)
Bashkatov, A.N., Genina, E.A., Tuchin, V.V.: Optical properties of skin, subcutaneous, and muscle tissues: a review. J. Innov. Opt. Health Sci. 4, 9–38 (2011)
Kroemer, G., Pouyssegur, J.: Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell 13, 472–482 (2008)
Aboughaleb, I.H., Aref, M.H., El-Sharkawy, Y.H.: Hyperspectral imaging for diagnosis and detection of ex-vivo breast cancer. Photodiagn. Photodyn. Ther. 31, 101922 (2020)
Kho, E., et al.: Hyperspectral imaging for resection margin assessment during cancer surgery. Clin. Cancer Res. 25, 3572–3580 (2019)
Kho, E., et al.: Broadband hyperspectral imaging for breast tumor detection using spectral and spatial information. Biomed. Opt. Express 10, 4496–4515 (2019)
Zhang, Y., et al.: Explainable liver tumor delineation in surgical specimens using hyperspectral imaging and deep learning. Biomed. Opt. Express 12, 4510–4529 (2021)
Ortega, S., et al.: Hyperspectral imaging for the detection of glioblastoma tumor cells in H&E slides using convolutional neural networks. Sensors 20, 1911 (2020)
Lv, M., et al.: Membranous nephropathy classification using microscopic hyperspectral imaging and tensor patch-based discriminative linear regression. Biomed. Opt. Express 12, 2968–2978 (2021)
Liu, N., Guo, Y., Jiang, H., Yi, W.: Gastric cancer diagnosis using hyperspectral imaging with principal component analysis and spectral angle mapper. J. Biomed. Opt. 25, 066005 (2020)
Li, Y., et al.: Diagnosis of early gastric cancer based on fluorescence hyperspectral imaging technology combined with partial-least-square discriminant analysis and support vector machine. J. Biophotonics 12, e201800324 (2019)
Halicek, M., Little, J.V., Wang, X., Chen, A.Y., Fei, B.: Optical biopsy of head and neck cancer using hyperspectral imaging and convolutional neural networks. J. Biomed. Opt. 24, 036007 (2019)
Halicek, M., et al.: Hyperspectral imaging of head and neck squamous cell carcinoma for cancer margin detection in surgical specimens from 102 patients using deep learning. Cancers 11, 1367 (2019)
Halicek, M., Dormer, J.D., Little, J.V., Chen, A.Y., Fei, B.: Tumor detection of the thyroid and salivary glands using hyperspectral imaging and deep learning. Biomed. Opt. Express 11, 1383–1400 (2020)
Baltussen, E.J., et al.: Hyperspectral imaging for tissue classification, a way toward smart laparoscopic colorectal surgery. J. Biomed. Opt. 24, 016002 (2019)
Huang, Q., et al.: Blood cell classification based on hyperspectral imaging with modulated Gabor and CNN. IEEE J. Biomed. Health Inform. 24, 160–170 (2019)
Fabelo, H., et al.: 2019 XXXIV Conference on Design of Circuits and Integrated Systems (DCIS), pp. 1–6. IEEE
Leon, R., et al.: Non-invasive skin cancer diagnosis using hyperspectral imaging for in-situ clinical support. J. Clin. Med. 9, 1662 (2020)
Hosking, A.M., et al.: Hyperspectral imaging in automated digital dermoscopy screening for melanoma. Lasers Surg. Med. 51, 214–222 (2019)
Zherebtsov, E., et al.: Hyperspectral imaging of human skin aided by artificial neural networks. Biomed. Opt. Express 10, 3545–3559 (2019)
He, Q., Wang, R.: Hyperspectral imaging enabled by an unmodified smartphone for analyzing skin morphological features and monitoring hemodynamics. Biomed. Opt. Express 11, 895–910 (2020)
Kohler, L.H., et al.: Hyperspectral imaging (HSI) as a new diagnostic tool in free flap monitoring for soft tissue reconstruction: a proof of concept study. BMC Surg. 21, 1–9 (2021)
More, S.S., Beach, J.M., McClelland, C., Mokhtarzadeh, A., Vince, R.: In vivo assessment of retinal biomarkers by hyperspectral imaging: early detection of Alzheimer’s disease. ACS Chem. Neurosci. 10, 4492–4501 (2019)
Hadoux, X., et al.: Non-invasive in vivo hyperspectral imaging of the retina for potential biomarker use in Alzheimer’s disease. Nat. Commun. 10, 1–12 (2019)
Yoon, J., et al.: First experience in clinical application of hyperspectral endoscopy for evaluation of colonic polyps. J. Biophotonics (2021). https://doi.org/10.1002/jbio.202100078
Fabelo, H., et al.: In-vivo hyperspectral human brain image database for brain cancer detection. IEEE Access 7, 39098–39116 (2019)
Florimbi, G., et al.: Towards real-time computing of intraoperative hyperspectral imaging for brain cancer detection using multi-GPU platforms. IEEE Access 8, 8485–8501 (2020)
Köhler, H., et al.: Evaluation of hyperspectral imaging (HSI) for the measurement of ischemic conditioning effects of the gastric conduit during esophagectomy. Surg. Endosc. 33, 3775–3782 (2019)
Sucher, R., et al.: Hyperspectral Imaging (HSI) in anatomic left liver resection. Int. J. Surg. Case Rep. 62, 108–111 (2019)
Jansen-Winkeln, B., et al.: Determination of the transection margin during colorectal resection with hyperspectral imaging (HSI). Int. J. Colorectal Dis. 34, 731–739 (2019)
Sucher, R., et al.: Hyperspectral imaging (HSI) of human kidney allografts. Ann. Surg. (2020). https://doi.org/10.1097/SLA.0000000000004429
Larsen, E.L., et al.: Hyperspectral imaging of atherosclerotic plaques in vitro. J. Biomed. Opt. 16, 026011 (2011)
Hacker, L., et al.: A copolymer-in-oil tissue-mimicking material with tuneable acoustic and optical characteristics for photoacoustic imaging phantoms. IEEE Trans. Medical Imaging 40(12), 3595–3603 (2021). https://doi.org/10.1109/TMI.2021.3090857
Harper, D.J., et al.: Hyperspectral optical coherence tomography for in vivo visualization of melanin in the retinal pigment epithelium. J. Biophotonics 12, e201900153 (2019)
Diot, G., et al.: Multispectral optoacoustic tomography (MSOT) of human breast cancer. Clin. Cancer Res. 23, 6912–6922 (2017)
Li, H., et al.: 25th IEEE International Conference on Image Processing (ICIP), pp. 3323–3327. IEEE (2018)
Zhang, J., Sun, Y., Chen, J., Yang, D., Liang, R.: Deep-learning-based hyperspectral recovery from a single RGB image. Opt. Lett. 45, 5676–5679 (2020)
Shi, Z., Chen, C., Xiong, Z., Liu, D., Wu, F.: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 939–947
Kaya, B., Can, Y.B., Timofte, R.: 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), pp. 3546–3555. IEEE
Zhang, W., et al.: Deeply learned broadband encoding stochastic hyperspectral imaging. Light Sci. Appl. 10, 1–7 (2021)
Liu, T., et al.: Deep learning-based super-resolution in coherent imaging systems. Sci. Rep. 9, 1–13 (2019)