Hyperpolarized 13C lactate as a substrate for in vivo metabolic studies in skeletal muscle

Metabolomics - Tập 10 - Trang 986-994 - 2014
Jessica A. M. Bastiaansen1, Hikari A. I. Yoshihara2,3, Yuhei Takado2,4, Rolf Gruetter1,5,6, Arnaud Comment2
1Laboratory for Functional and Metabolic Imaging, LIFMET-IPSB-SB, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
2Institute of Physics of Biological Systems, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
3Department of Cardiology, Lausanne University Hospital, Lausanne, Switzerland
4Laboratory of Biological Geochemistry, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
5Department of Radiology, Geneva University Hospital and Faculty of Medicine, University of Geneva, Geneva 4, Switzerland
6Department of Radiology, University of Lausanne, Lausanne, Switzerland

Tóm tắt

Resting skeletal muscle has a preference for the oxidation of lipids compared to carbohydrates and a shift towards carbohydrate oxidation is observed with increasing exercise. Lactate is not only an end product in skeletal muscle but also an important metabolic intermediate for mitochondrial oxidation. Recent advances in hyperpolarized MRS allow the measurement of substrate metabolism in vivo in real time. The aim of this study was to investigate the use of hyperpolarized 13C lactate as a substrate for metabolic studies in skeletal muscle in vivo. Carbohydrate metabolism in healthy rat skeletal muscle at rest was studied in different nutritional states using hyperpolarized [1-13C]lactate, a substrate that can be injected at physiological concentrations and leaves other oxidative processes undisturbed. 13C label incorporation from lactate into bicarbonate in fed animals was observed within seconds but was absent after an overnight fast, representing inhibition of the metabolic flux through pyruvate dehydrogenase (PDH). A significant decrease in 13C labeling of alanine was observed comparing the fed and fasted group, and was attributed to a change in cellular alanine concentration and not a decrease in enzymatic flux through alanine transaminase. We conclude that hyperpolarized [1-13C]lactate can be used to study carbohydrate oxidation in resting skeletal muscle at physiological levels. The herein proposed method allows probing simultaneously both PDH activity and variations in alanine tissue concentration, which are associated with metabolic dysfunctions. A simple alteration of the nutritional state demonstrated that the observed pyruvate, alanine, and bicarbonate signals are indeed sensitive markers to probe metabolic changes in vivo.

Tài liệu tham khảo

Ardenkjaer-Larsen, J. H., Fridlund, B., Gram, A., Hansson, G., Hansson, L., Lerche, M. H., et al. (2003). Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR. Proceedings of the National Academy of Sciences of the United States of America, 100(18), 10158–10163. Bastiaansen, J. A. M., Cheng, T., Mishkovsky, M., Duarte, J. M. N., Comment, A., & Gruetter, R. (2013). In vivo enzymatic activity of acetylCoA synthetase in skeletal muscle revealed by 13C turnover from hyperpolarized [1-13C]acetate to [1-13C]acetylcarnitine. Biochimica et Biophysica Acta, 1830(8), 4171–4178. doi:10.1016/j.bbagen.2013.03.023. Berger, M., Hagg, S. A., Goodman, M. N., & Ruderman, N. B. (1976). Glucose-metabolism in perfused skeletal-muscle—Effects of starvation, diabetes, fatty-acids, acetoacetate, insulin and exercise on glucose-uptake and disposition. Biochemical Journal, 158(2), 191–202. Bertocci, L. A., Jones, J. G., Malloy, C. R., Victor, R. G., & Thomas, G. D. (1997). Oxidation of lactate and acetate in rat skeletal muscle: Analysis by C-13-nuclear magnetic resonance spectroscopy. Journal of Applied Physiology, 83(1), 32–39. Bertocci, L. A., & Lujan, B. F. (1999). Incorporation and utilization of [3-C-13]lactate and [1,2-C-13]acetate by rat skeletal muscle. Journal of Applied Physiology, 86(6), 2077–2089. Bretthorst, G. L. (1990). Bayesian analysis. I: Parameter estimation using quadrature NMR models. Journal of Magnetic Resonance, 88, 533–551. Brooks, G. A. (1998). Mammalian fuel utilization during sustained exercise. Comparative Biochemistry and Physiology B-Biochemistry and Molecular Biology, 120(1), 89–107. doi:10.1016/S0305-0491(98)00025-X. Brooks, G. A. (2000). Intra- and extra-cellular lactate shuttles. Medicine and Science in Sports and Exercise, 32(4), 790–799. doi:10.1097/00005768-200004000-00011. Brooks, G. A., & Mercier, J. (1994). Balance of carbohydrate and lipid utilization during exercise: The crossover concept. Journal of Applied Physiology, 76(6), 2253–2261. Chen, A. P., Kurhanewicz, J., Bok, R., Xua, D., Joun, D., Zhang, V., et al. (2008). Feasibility of using hyperpolarized [1-C-13]lactate as a substrate for in vivo metabolic C-13 MRSI studies. Magnetic Resonance Imaging, 26(6), 721–726. doi:10.1016/j.mri.2008.01.002. Cheng, T., Mishkovsky, M., Bastiaansen, J. A. M., Ouari, O., Hautle, P., Tordo, P., et al. (2013). Method to minimize and monitor in situ the polarization losses in hyperpolarized biomolecules prior to in vivo MR experiments. NMR in Biomedicine,. doi:10.1002/nbm.2993. Christop, J., Winand, J., & Hebbelin, M. (1971). Amino acid levels in plasma, liver, muscle, and kidney during and after exercise in fasted and fed rats. American Journal of Physiology, 221(2), 453–457. Comment, A., van den Brandt, B., Uffmann, K., Kurdzesau, F., Jannin, S., Konter, J. A., et al. (2007). Design and performance of a DNP prepolarizer coupled to a rodent MRI scanner. Concepts in Magnetic Resonance Part B: Magnetic Resonance Engineering, 31B(4), 255–269. Dancis, J., Hutzler, J., & Levitz, M. (1960). Metabolism of the white blood cells in maple-syrup-urine disease. Biochimica et Biophysica Acta, 43(2), 342–343. doi:10.1016/0006-3002(60)90448-0. Day, S. E., Kettunen, M. I., Gallagher, F. A., Hu, D. E., Lerche, M., Wolber, J., et al. (2007). Detecting tumor response to treatment using hyperpolarized C-13 magnetic resonance imaging and spectroscopy. Nature Medicine, 13(11), 1382–1387. doi:10.1038/Nm1650. Duarte, J. M., Cunha, R. A., & Carvalho, R. A. (2007). Different metabolism of glutamatergic and GABAergic compartments in superfused hippocampal slices characterized by nuclear magnetic resonance spectroscopy. Neuroscience, 144(4), 1305–1313. doi:10.1016/j.neuroscience.2006.11.027. Felig, P. (1973). The glucose–alanine cycle. Metabolism-Clinical and Experimental, 22(2), 179–207. doi:10.1016/0026-0495(73)90269-2. Garber, A. J., Karl, I. E., & Kipnis, D. M. (1976). Alanine and glutamine synthesis and release from skeletal-muscle. 2. precursor role of amino-acids in alanine and glutamine synthesis. Journal of Biological Chemistry, 251(3), 836–843. Garland, P. B., Randle, P. J., & Newsholme, E. A. (1964). Regulation of glucose uptake by muscle. 9. Effects of fatty acids + ketone bodies + of alloxan-diabetes + starvation on pyruvate metabolism + on lactate/pyruvate + l-glycerol 3-phosphate/dihydroxyacetone phosphate concentration ratios in rat heart + rat diaphragm muscles. Biochemical Journal, 93(3), 665–678. Gladden, L. B. (2004). Lactate metabolism: A new paradigm for the third millennium. The Journal of Physiology, 558(1), 5–30. doi:10.1113/jphysiol.2003.058701. Gladden, L. B., Crawford, R. E., & Webster, M. J. (1994). Effect of lactate concentration and metabolic-rate on net lactate uptake by canine skeletal-muscle. American Journal of Physiology, 266(4), R1095–R1101. Gobatto, C. A., de Mello, M. A. R., Sibuya, C. Y., de Azevedo, J. R. M., dos Santos, L. A., & Kokubun, E. (2001). Maximal lactate steady state in rats submitted to swimming exercise. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 130(1), 21–27. doi:10.1016/S1095-6433(01)00362-2. Goodman, M. N., Berger, M., & Ruderman, N. B. (1974). Glucose-metabolism in rat skeletal-muscle at rest effect of starvation, diabetes, ketone-bodies and free fatty-acids. Diabetes, 23(11), 881–888. Goodman, M. N., Dietrich, R., & Luu, P. (1990). Formation of gluconeogenic precursors in rat skeletal muscle during fasted-refed transition. American Journal of Physiology, 259(4 Pt 1), E513–E516. Gruetter, R., & Tkac, I. (2000). Field mapping without reference scan using asymmetric echo-planar techniques. Magnetic Resonance in Medicine, 43(2), 319–323. Houtkooper, R. H., Canto, C., Wanders, R. J., & Auwerx, J. (2010). The secret life of NAD(+): An old metabolite controlling new metabolic signaling pathways. Endocrine Reviews, 31(2), 194–223. doi:10.1210/Er.2009-0026. Hu, S., Chen, A. P., Zierhut, M. L., Bok, R., Yen, Y. F., Schroeder, M. A., et al. (2009). In vivo carbon-13 dynamic MRS and MRSI of normal and fasted rat liver with hyperpolarized C-13-pyruvate. Molecular Imaging and Biology, 11(6), 399–407. doi:10.1007/s11307-009-0218-z. Jucker, B. M., Rennings, A. J. M., Cline, G. W., & Shulman, G. I. (1997). C-13 and P-31 NMR studies on the effects of increased plasma free fatty acids on intramuscular glucose metabolism in the awake rat. Journal of Biological Chemistry, 272(16), 10464–10473. Juel, C. (1991). Muscle lactate transport studied in sarcolemmal giant vesicles. Biochimica et Biophysica Acta, 1065(1), 15–20. doi:10.1016/0005-2736(91)90004-R. Juel, C., & Halestrap, A. P. (1999). Lactate transport in skeletal muscle—Role and regulation of the monocarboxylate transporter. The Journal of Physiology, 517(3), 633–642. doi:10.1111/j.1469-7793.1999.0633s.x. Karl, I. E., Garber, A. J., & Kipnis, D. M. (1976). Alanine and glutamine synthesis and release from skeletal-muscle. 3. Dietary and hormonal-regulation. Journal of Biological Chemistry, 251(3), 844–850. Kennedy, B. W. C., Kettunen, M. I., Hu, D. E., & Brindle, K. M. (2012). Probing lactate dehydrogenase activity in tumors by measuring hydrogen/deuterium exchange in hyperpolarized L-[1-C-13, U-H-2]lactate. Journal of the American Chemical Society, 134(10), 4969–4977. doi:10.1021/Ja300222e. Kettunen, M. I., Hu, D. E., Witney, T. H., McLaughlin, R., Gallagher, F. A., Bohndiek, S. E., et al. (2010). Magnetization transfer measurements of exchange between hyperpolarized [1-C-13]pyruvate and [1-C-13]lactate in a murine lymphoma. Magnetic Resonance in Medicine, 63(4), 872–880. doi:10.1002/Mrm.22276. Macdonald, M., Neufeldt, N., Park, B. N., Berger, M., & Ruderman, N. (1976). Alanine metabolism and gluconeogenesis in rat. American Journal of Physiology, 231(2), 619–626. Mallette, L. E., Exton, J. H., & Park, C. R. (1969). Control of gluconeogenesis from amino acids in perfused rat liver. Journal of Biological Chemistry, 244(20), 5713–5723. Mayer, D., Yen, Y. F., Josan, S., Park, J. M., Pfefferbaum, A., Hurd, R. E., et al. (2012). Application of hyperpolarized [1-13C]lactate for the in vivo investigation of cardiac metabolism. NMR in Biomedicine, 25(10), 1119–1124. doi:10.1002/Nbm.2778. Merritt, M. E., Harrison, C., Sherry, A. D., Malloy, C. R., & Burgess, S. C. (2011). Flux through hepatic pyruvate carboxylase and phosphoenolpyruvate carboxykinase detected by hyperpolarized C-13 magnetic resonance. Proceedings of the National Academy of Sciences of the United States of America, 108(47), 19084–19089. doi:10.1073/pnas.1111247108. Merritt, M. E., Harrison, C., Storey, C., Jeffrey, F. M., Sherry, A. D., & Malloy, C. R. (2007). Hyperpolarized 13C allows a direct measure of flux through a single enzyme-catalyzed step by NMR. Proceedings of the National Academy of Sciences of the United States of America, 104(50), 19773–19777. doi:10.1073/pnas.0706235104. Naressi, A., Couturier, C., Devos, J. M., Janssen, M., Mangeat, C., de Beer, R., et al. (2001). Java-based graphical user interface for the MRUI quantitation package. Magnetic Resonance Materials in Physics, Biology and Medicine, 12(2–3), 141–152. Odessey, R., Khairall, E. A., & Goldberg, A. L. (1974). Origin and possible significance of alanine production by skeletal-muscle. Journal of Biological Chemistry, 249(23), 7623–7629. Pagliara, A. S., Kipnis, D. M., Karl, I. E., Devivo, D. C., & Feigin, R. D. (1972). Hypoalaninemia—A concomitant of ketotic hypoglycemia. Journal of Clinical Investigation, 51(6), 1440–1449. doi:10.1172/Jci106940. Poole, R. C., & Halestrap, A. P. (1993). Transport of lactate and other monocarboxylates across mammalian plasma-membranes. American Journal of Physiology, 264(4), C761–C782. Roth, D. A. (1991). The sarcolemmal lactate transporter: Transmembrane determinants of lactate flux. Medicine and Science in Sports and Exercise, 23(8), 925–934. Ruderman, N. B., & Berger, M. (1974). Formation of glutamine and alanine in skeletal-muscle. Journal of Biological Chemistry, 249(17), 5500–5506. Schroeder, M. A., Cochlin, L. E., Heather, L. C., Clarke, K., Radda, G. K., Tyler, D. J., et al. (2008). In vivo assessment of pyruvate dehydrogenase flux in the heart using hyperpolarized carbon-13 magnetic resonance. Proceedings of the National Academy of Sciences of the United States of America, 105(33), 12051–12056. doi:10.1073/pnas.0805953105. Vettor, R., Lombardi, A. M., Fabris, R., Pagano, C., Cusin, I., RohnerJeanrenaud, F., et al. (1997). Lactate infusion in anesthetized rats produces insulin resistance in heart and skeletal muscles. Metabolism-Clinical and Experimental, 46(6), 684–690. doi:10.1016/S0026-0495(97)90014-7. Watt, P. W., Maclennan, P. A., Hundal, H. S., Kuret, C. M., & Rennie, M. J. (1988). L(+)-lactate transport in perfused rat skeletal-muscle: Kinetic characteristics and sensitivity to ph and transport inhibitors. Biochimica et Biophysica Acta, 944(2), 213–222. doi:10.1016/0005-2736(88)90434-8. Yoshida, Y., Holloway, G. P., Ljubicic, V., Hatta, H., Spriet, L. L., Hood, D. A., et al. (2007). Negligible direct lactate oxidation in subsarcolemmal and intermyofibrillar mitochondria obtained from red and white rat skeletal muscle. The Journal of Physiology, 582(3), 1317–1335. doi:10.1113/jphysiol.2007.135095.