Hyperparameter Optimization Using a Genetic Algorithm Considering Verification Time in a Convolutional Neural Network
Tóm tắt
Từ khóa
Tài liệu tham khảo
Everingham M, Van Gool L, Williams CK, Winn J, Zisserman A (2010) The pascal visual object classes (VOC) challenge. IJCV 303–338
Huval B, Wang T, Tandon S et al (2015) An empirical evaluation of deep learning on highway driving. arXiv:1504.01716
Stoica P, Gershman AB (1999) Maximum-likelihood DOA estimation by data-supported grid search. IEEE Signal Process Lett 6:273–275
Bergstra J, Bengio Y (2012) Random search for hyper-parameter optimization. J Mach Learn Res 13(1):281–305
Snoek J, Larochelle H, Adams R (2012) Practical Bayesian optimization of machine learning algorithms. Adv Neural Inf Process Syst 25:2960–2968
Lin SW, Ying KC, Chen SC, Lee ZJ (2008) Particle swarm optimization for parameter determination and feature selection of support vector machines. Exper Syst Appl 35(4):1817–1824
de Souza SX, Suykens JA, Vandewalle J, Bolle D (2010) Coupled simulated annealing. Syst Man Cybern Part B Cybern IEEE Trans 40(2):320–335
Birattari M, Yuan Z, Balaprakash P, Stützle T (2010) F-race and iterated f-race: an overview. In: Bartz-Beielstein T, Chiarandini M, Paquete L, Preuss M (eds) Experimental methods for the analysis of optimization algorithms. Springer, Berlin, Heidelberg
Deb K, Agrawal S, Pratap A, Meyarivan T (2000) A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Schoenauer M et al (eds) Parallel problem solving from nature PPSN VI. PPSN 2000. Lecture Notes in Computer Science, vol 1917. Springer, Berlin, Heidelberg
Goky S (2017) Deep learning from scratch. Hanbit Media, Seoul, pp 250–254