Hyperparameter Optimization Using a Genetic Algorithm Considering Verification Time in a Convolutional Neural Network

Journal of Electrical Engineering & Technology - Tập 15 Số 2 - Trang 721-726 - 2020
Ji‐Hoon Han1, Dong-Jin Choi1, Sang-Uk Park2, Sun-Ki Hong2
1Department of Information Control Engineering, Hoseo University, Asan, Korea
2Department of Digital Control Engineering, Hoseo University, Asan, Korea

Tóm tắt

Từ khóa


Tài liệu tham khảo

Everingham M, Van Gool L, Williams CK, Winn J, Zisserman A (2010) The pascal visual object classes (VOC) challenge. IJCV 303–338

Huval B, Wang T, Tandon S et al (2015) An empirical evaluation of deep learning on highway driving. arXiv:1504.01716

Stoica P, Gershman AB (1999) Maximum-likelihood DOA estimation by data-supported grid search. IEEE Signal Process Lett 6:273–275

Bergstra J, Bengio Y (2012) Random search for hyper-parameter optimization. J Mach Learn Res 13(1):281–305

Snoek J, Larochelle H, Adams R (2012) Practical Bayesian optimization of machine learning algorithms. Adv Neural Inf Process Syst 25:2960–2968

Lin SW, Ying KC, Chen SC, Lee ZJ (2008) Particle swarm optimization for parameter determination and feature selection of support vector machines. Exper Syst Appl 35(4):1817–1824

de Souza SX, Suykens JA, Vandewalle J, Bolle D (2010) Coupled simulated annealing. Syst Man Cybern Part B Cybern IEEE Trans 40(2):320–335

Birattari M, Yuan Z, Balaprakash P, Stützle T (2010) F-race and iterated f-race: an overview. In: Bartz-Beielstein T, Chiarandini M, Paquete L, Preuss M (eds) Experimental methods for the analysis of optimization algorithms. Springer, Berlin, Heidelberg

Deb K, Agrawal S, Pratap A, Meyarivan T (2000) A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Schoenauer M et al (eds) Parallel problem solving from nature PPSN VI. PPSN 2000. Lecture Notes in Computer Science, vol 1917. Springer, Berlin, Heidelberg

Goky S (2017) Deep learning from scratch. Hanbit Media, Seoul, pp 250–254

Han JH, Choi DJ, Hong SK, Kim HS (2019) Motor fault diagnosis using CNN based deep learning algorithm considering motor rotating speed. In: International conference on industrial engineering and applications, pp 440–445