Hyperfine spin qubits in irradiated malonic acid: heat-bath algorithmic cooling

Quantum Information Processing - Tập 14 - Trang 2435-2461 - 2015
Daniel K. Park1,2, Guanru Feng1,2, Robabeh Rahimi1,2, Stéphane Labruyère1, Taiki Shibata3, Shigeaki Nakazawa3, Kazunobu Sato3, Takeji Takui3, Raymond Laflamme1,2,4,5, Jonathan Baugh1,6
1Institute for Quantum Computing, University of Waterloo, Waterloo, Canada
2Department of Physics and Astronomy, University of Waterloo, Waterloo, Canada
3Department of Chemistry and Molecular Materials Science, Graduate School of Science, Osaka City University, Osaka, Japan
4Perimeter Institute for Theoretical Physics, Waterloo, Canada
5Canadian Institute for Advanced Research, Toronto, Canada
6Department of Chemistry, University of Waterloo, Waterloo, Canada

Tóm tắt

The ability to perform quantum error correction is a significant hurdle for scalable quantum information processing. A key requirement for multiple-round quantum error correction is the ability to dynamically extract entropy from ancilla qubits. Heat-bath algorithmic cooling is a method that uses quantum logic operations to move entropy from one subsystem to another and permits cooling of a spin qubit below the closed system (Shannon) bound. Gamma-irradiated, $$^{13}$$ C-labeled malonic acid provides up to five spin qubits: one spin-half electron and four spin-half nuclei. The nuclei are strongly hyperfine-coupled to the electron and can be controlled either by exploiting the anisotropic part of the hyperfine interaction or by using pulsed electron nuclear double resonance techniques. The electron connects the nuclei to a heat-bath with a much colder effective temperature determined by the electron’s thermal spin polarization. By accurately determining the full spin Hamiltonian and performing realistic algorithmic simulations, we show that an experimental demonstration of heat-bath algorithmic cooling beyond the Shannon bound is feasible in both three-qubit and five-qubit variants of this spin system. Similar techniques could be useful for polarizing nuclei in molecular or crystalline systems that allow for non-equilibrium optical polarization of the electron spin.

Tài liệu tham khảo

Knill, E., Laflamme, R.: Theory of quantum error-correcting codes. Phys. Rev. A 55(2), 900–911 (1997) Knill, E., Laflamme, R., Zurek, W.H.: Resilient quantum computation. Science 279(5349), 342–345 (1998) Preskill, J.: Reliable quantum computers. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 454(1969), 385–410 (1998) Knill, E.: Quantum computing with realistically noisy devices. Nature 434(7029), 39–44 (2005) Aliferis, P., Gottesman, D., Preskill, J.: Accuracy threshold for postselected quantum computation. Quantum Inf. Comput. 8(3&4), 0181–0244 (2008) Gottesman, D.: Stabilizer codes and quantum error correction. Ph.D. thesis, Caltech (1997), eprint: quant-ph/9705052 Taminiau, T.H., Cramer, J., van der Sar, T., Dobrovitski, V.V., Hanson, R.: Universal control and error correction in multi-qubit spin registers in diamond. Nat. Nanotechnol. 9(3), 171–176 (2014) Kelly, J., Barends, R., Fowler, A.G., Megrant, A., Jeffrey, E., White, T.C., Sank, D., Mutus, J.Y., Campbell, B., Chen, Y., Chen, Z., Chiaro, B., Dunsworth, A., Hoi, I.C., Neill, C., Omalley, P.J.J., Quintana, C., Roushan, P., Vainsencher, A., Wenner, J., Cleland, A.N., Martinis, J.M.: State preservation by repetitive error detection in a superconducting quantum circuit. Nature 519(7541), 66–69 (2015) Knill, E., Laflamme, R., Martinez, R., Tseng, C.H.: An algorithmic benchmark for quantum information processing. Nature 404(6776), 368–370 (2000) Negrevergne, C., Mahesh, T., Ryan, C., Ditty, M., Cyr-Racine, F., Power, W., Boulant, N., Havel, T., Cory, D., Laflamme, R.: Benchmarking quantum control methods on a 12-qubit system. Phys. Rev. Lett. 96(17), 170501 (2006) Ryan, C.A., Laforest, M., Laflamme, R.: Randomized benchmarking of single- and multi-qubit control in liquid-state NMR quantum information processing. New J. Phys. 11(1), 013034 (2009) Emerson, J., Silva, M., Moussa, O., Ryan, C., Laforest, M., Baugh, J., Cory, D.G., Laflamme, R.: Symmetrized characterization of noisy quantum processes. Science 317(5846), 1893–1896 (2007) Kaye, P., Laflamme, R., Mosca, M.: An Introduction to Quantum Computing. Oxford University Press, Oxford (2007) Criger, B., Moussa, O., Laflamme, R.: Quantum error correction with mixed ancilla qubits. Phys. Rev. A 85, 044302 (2012) Boykin, P.O., Mor, T., Roychowdhury, V., Vatan, F., Vrijen, R.: Algorithmic cooling and scalable NMR quantum computers. Proc. Natl. Acad. Sci. USA 99, 3388–3393 (2002) Fernandez, J.M., Lloyd, S., Mor, T., Roychowdhury, V.: Algorithmic cooling of spins: a practicable method for increasing polarization. Int. J. Quantum Inf. 2(4), 461–477 (2004) Rempp, F., Michel, M., Mahler, G.: Cyclic cooling algorithm. Phys. Rev. A 76, 032325 (2007) Kaye, P.: Cooling algorithm based on the 3-bit majority. Quantum Inf. Process. 6(4), 295–322 (2007) Schulman, L.J., Mor, T., Weinstein, Y.: Physical limits of heat-bath algorithmic cooling. Phys. Rev. Lett. 94, 120501 (2005) Baugh, J., Moussa, O., Ryan, C.A., Nayak, A., Laflamme, R.: Experimental implementation of heat-bath algorithmic cooling using solid-state nuclear magnetic resonance. Nature 438(7067), 470–473 (2005) Ryan, C.A., Moussa, O., Baugh, J., Laflamme, R.: Spin based heat engine: demonstration of multiple rounds of algorithmic cooling. Phys. Rev. Lett. 100, 140501 (2008) Cole, T., Heller, C., McConnell, H.: Electron magnetic resonance of CH(COOH)\(_2\). Proc. Natl. Acad. Sci. USA 45(4), 525–528 (1959) Cole, T., Heller, C.: Hyperfine splittings in the (HOOC) C\(^{13}\)H (COOH) radical. J. Chem. Phys. 34, 1085–1086 (1961) Horsfield, A., Morton, J., Whiffen, D.: Electron spin resonance of \(\gamma \)-irradiated malonic acid. Mol. Phys. 4(4), 327–332 (1961) Khaneja, N.: Switched control of electron nuclear spin systems. Phys. Rev. A 76, 032326 (2007) Hodges, J.S., Yang, J.C., Ramanathan, C., Cory, D.G.: Universal control of nuclear spins via anisotropic hyperfine interactions. Phys. Rev. A 78(1), 010303 (2008) Zhang, Y., Ryan, C.A., Laflamme, R., Baugh, J.: Coherent control of two nuclear spins using the anisotropic hyperfine interaction. Phys. Rev. Lett. 107(17), 170503 (2011) Khaneja, N., Reiss, T., Kehlet, C., Schulte-Herbrüggen, T., Glaser, S.J.: Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. J. Magn. Reson. 172(2), 296–305 (2005) Loubser, J., Van Wyk, J.: Electron spin resonance in the study of diamond. Rep. Prog. Phys. 41(8), 1201–1248 (1978) Doherty, M.W., Manson, N.B., Delaney, P., Hollenberg, L.C.: The negatively charged nitrogen-vacancy centre in diamond: the electronic solution. New J. Phys. 13(2), 025019 (2011) Doherty, M., Dolde, F., Fedder, H., Jelezko, F., Wrachtrup, J., Manson, N., Hollenberg, L.: Theory of the ground-state spin of the NV- center in diamond. Phys. Rev. B 85(20), 205203 (2012) Akhtar, W., Filidou, V., Sekiguchi, T., Kawakami, E., Itahashi, T., Vlasenko, L., Morton, J.J.L., Itoh, K.M.: Coherent storage of photoexcited triplet states using \(^{29}\)Si nuclear spins in silicon. Phys. Rev. Lett. 108, 097601 (2012) Goedkoop, J.A., MacGillavry, C.H.: The crystal structure of malonic acid. Acta Crystallogr. 10(2), 125–127 (1957) Jagannathan, N., Rajan, S., Subramanian, E.: Refinement of the crystal structure of malonic acid, C\(_3\)H\(_4\)O\(_4\). J. Chem. Crystallogr. 24(1), 75–78 (1994) Krzystek, J., Kwiram, A.B., Kwiram, A.L.: EDNMR and ENDOR study of the \(\beta \)-\(\gamma \) phase transition in malonic acid crystals. J. Phys. Chem. 99(1), 402–409 (1995) Fukai, M., Matsuo, T., Suga, H.: Thermodynamic properties of phase transitions in malonic acid and its deuterated analogue. Thermochim. Acta 183, 215–243 (1991) McCalley, R., Kwiram, A.L.: ENDOR studies at 4.2 k of the radicals in malonic acid single crystals. J. Phys. Chem. 97(12), 2888–2903 (1993) McConnell, H., Heller, C., Cole, T., Fessenden, R.: Radiation damage in organic crystals. I. CH (COOH)\(_2\) in malonic acid. J. Am. Chem. Soc. 82(4), 766–775 (1960) Morton, J.: Electron spin resonance spectra of oriented radicals. Chem. Rev. 64(4), 453–471 (1964) Sagstuen, E., Lund, A., Itagaki, Y., Maruani, J.: Weakly coupled proton interactions in the malonic acid radical: single crystal ENDOR analysis and EPR simulation at microwave saturation. J. Phys. Chem. A 104(27), 6362–6371 (2000) Kang, J., Tokdemir, S., Shao, J., Nelson, W.H.: Electronic g-factor measurement from ENDOR-induced EPR patterns: malonic acid and guanine hydrochloride dihydrate. J. Magn. Reson. 165(1), 128–136 (2003) Atherton, N.: Principles of Electron Spin Resonance. Ellis Horwood Limited, Chichester (1993) Moussa, O.: On heat-bath algorithmic cooling and its implementation in solid-state NMR. Master’s thesis, University of Waterloo (2005) Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119–130 (1976) Havel, T.F.: Robust procedures for converting among Lindblad, Kraus and matrix representations of quantum dynamical semigroups. J. Math. Phys. 44, 534–557 (2003)