Hyperelastic Energy Densities for Soft Biological Tissues: A Review
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abraham, A.C., Moyer, J.T., Villegas, D.F., Odegard, G.M., Haut Donahue, T.L.: Hyperelastic properties of human meniscal attachments. J. Biomech. 44, 413–418 (2011)
Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards, Applied Mathematics Series vol. 55 (1964)
Agoras, M., Lopez-Pamies, O., Ponte Castañeda, P.: A general hyperelastic model for incompressible fiber-reinforced elastomers. J. Mech. Phys. Solids 57, 268–286 (2009)
Alastrué, V., Peña, E., Martinez, M.A., Doblaré, M.: Experimental study and constitutive modelling of the passive mechanical properties of the ovine infrarenal vena cava tissue. J. Biomech. 41, 3038–3045 (2008)
Alastrué, V., Martinez, M.A., Doblaré, M., Menzel, A.: Anisotropic microsphere-based finite elasticity applied to blood vessel modelling. J. Mech. Phys. Solids 57, 178–203 (2009)
Alastrué, V., Martinez, M.A., Doblaré, M., Menzel, A.: On the use of the bingham statistical distribution in microsphere-based constitutive models for arterial tissue. Mech. Res. Commun. 37, 700–706 (2010)
Arnoux, P.J.: Modélisation des ligaments des membres porteurs. Ph.D. thesis, Université de la Méditerranée (2000)
Arnoux, P.J., Chabrand, P., Jean, M., Bonnoit, J.: A viscohyperelastic model with damage for the knee ligaments under dynamic constraints. Comput. Methods Biomech. Biomed. Eng. 5, 167–174 (2002)
Arruda, E.M., Boyce, M.C.: A three dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41(2), 389–412 (1993)
Ateshian, G.A.: Anisotropy of fibrous tissues in relation to the distribution of tensed and buckled fibers. J. Biomech. Eng. 129, 240–249 (2007)
Ateshian, G.A., Costa, K.D.: A frame-invariant formulation of fung elasticity. J. Biomech. 42, 781–785 (2009)
Azar, F.S., Metaxas, D.N., Schnall, M.D.: A deformable finite element model of the breast for predicting mechanical deformations under external perturbations. Acad. Radiol. 8, 965–975 (2001)
Baek, S., Gleason, R.L., Rajagopal, K.R., Humphrey, J.D.: Theory of small on large: potential utility in computations of fluid-solid interactions in arteries. Comput. Methods Appl. Mech. Eng. 196, 3070–3078 (2007)
Ball, J.M.: Convexity conditions and existence theorems in non-linear elasticity. Arch. Ration. Mech. Anal. 63, 557–611 (1977)
Ball, J.M.: Constitutive equalities and existence theorems in elasticity. In: Knops, R.J. (ed.) Symposium on Non-well Posed Problems and Logarithmic Convexity. Lecture Notes in Math., vol. 316. Springer, Berlin (1977)
Balzani, D., Neff, P., Schröder, J., Holzapfel, G.A.: A polyconvex framework for soft biological tissues. Adjustement to experimental data. Int. J. Solids Struct. 43, 6052–6070 (2006)
Balzani, D., Schröder, J., Gross, D.: Simulation of discontinuous damage incorporating residual stresses in circumferentially overstretched atherosclerotic arteries. Acta Biomater. 2, 609–618 (2006)
Balzani, D., Brands, D., Klawonn, A., Rheinbach, O., Schröder, J.: On the mechanical modeling of anisotropic biological soft tissue and iterative parallel solution strategies. Arch. Appl. Mech. 80, 479–488 (2010)
Basciano, C.A., Kleinstreuer, C.: Invariant-based anisotropic constitutive models of the healthy and aneurysmal abdominal aortic wall. J. Biomech. Eng. 131, 1–11 (2009)
Bažant, Z.P., Oh, B.H.: Efficient numerical integration on the surface of a sphere. Z. Angew. Math. Mech. 66, 37–49 (1986)
Beatty, M.F.: An average-stretch full-network model for rubber elasticity. J. Elast. 70, 65–86 (2004)
Bell, J.: The Experimental Foundations of Solid Mechanics, Mechanics of Solids. Springer, Berlin (1984)
Bilgili, E.: Restricting the hyperelastic models for elastomers based on some thermodynamical, mechanical and empirical criteria. J. Elastomers Plast. 36, 159–175 (2004)
Billar, K.L., Sacks, M.S.: Biaxial mechanical properties of the native and glutaraldehyde-treated aortic valve cusp: Part II—a structural constitutive model. J. Biomech. Eng. 122, 327–335 (2000)
Bischoff, J.E., Arruda, E.M., Grosh, K.: A microstructurally based orthotropic hyperelastic constitutive law. J. Appl. Mech. 69, 570–579 (2002)
Bischoff, J.E., Arruda, E.M., Grosh, K.: Orthotropic hyperelasticity in terms of an arbitrary molecular chain model. J. Appl. Mech. 69, 198–201 (2002)
Bischoff, J.E., Arruda, E.M., Grosh, K.: A rheological network model for the continuum anisotropic and viscoelastic behavior of soft tissue. Biomech. Model. Mechanobiol. 3, 56–65 (2004)
Bischoff, J.E.: Continuous versus discrete (invariant) representations of fibruous structure for modeling non-linear anisotropic soft tissue behavior. Int. J. Non-Linear Mech. 41, 167–179 (2006)
Boehler, J.: Applications of Tensor Functions in Solid Mechanics. CISM Courses and Lectures, vol. 292, pp. 13–30. Springer, Berlin (1987)
Boehler, J.: A simple derivation of representations for non-polynomial constitutive equations in some cases of anisotropy. J. Appl. Math. Mech. 59, 157–167 (1979)
Bonet, J., Burton, A.J.: A simple orthotropic, transversely isotropic hyperelastic constitutive equation for large strain computations. Comput. Methods Appl. Mech. Eng. 162, 151–164 (1998)
Bose, K., Dorfmann, A.: Computational aspects of a pseudo-elastic constitutive model for muscle properties in a soft-bodied arthropod. Int. J. Non-Linear Mech. 44, 42–50 (2009)
Boubaker, M.B., Haboussi, M., Ganghoffer, J.F., Aletti, P.: Finite element simulation of interactions between pelvic organs: predictive model of the prostate motion in the context of radiotherapy. J. Biomech. 42, 1862–1868 (2009)
Boyce, M.C., Arruda, E.M.: Constitutive models of rubber elasticity: a review. Rubber Chem. Technol. 73, 504–523 (2000)
Brown, L.W., Smith, L.M.: A simple transversely isotropic hyperelastic constitutive model suitable for finite element analysis of fiber reinforced elastomers. J. Eng. Mater. Technol. 133, 1–13 (2011)
Bustamante, C., Bryant, Z., Smith, S.B.: Ten years of tension: single-molecule DNA mechanics. Nature 421, 423–427 (2003)
Cacho, F., Elbischger, P., Rodriguez, J., Doblaré, M., Holzapfel, G.: A constitutive model for fibrous tissue sconsidering collagen fiber crimp. Int. J. Non-Linear Mech. 42, 391–402 (2007)
Calvo, B., Peña, E., Martins, P., Mascarenhas, T., Doblaré, M., Natal Jorge, R.M., Ferreira, A.: On modelling damage process in vaginal tissue. J. Biomech. 42, 642–651 (2009)
Calvo, B., Ramirez, A., Alonso, A., Grasa, J., Soteras, F., Osta, R., Muñoz, M.J.: Passive non linear elastic behaviour of skeletal muscle: experimental results and model formulation. J. Biomech. 43, 318–325 (2010)
Caner, F.C., Guo, Z., Moran, B., Bazant, Z.P., Carol, I.: Hyperelastic anisotropic microplane constitutive model for annulus fibrosus. Trans. Am. Soc. Mech. Eng. 129, 1–10 (2007)
Carboni, M., Desch, G.W., Weizsacker, H.W.: Passive mechanical properties of porcine left circumflex artery and its mathematical description. Med. Eng. Phys. 29, 8–16 (2007)
Chagnon, G., Marckmann, G., Verron, E.: A comparison of the physical model of Arruda–Boyce with the empirical Hart–Smith model and the Gent model. Rubber Chem. Technol. 77, 724–735 (2004)
Chagnon, G., Gaudin, V., Favier, D., Orgeas, L., Cinquin, P.: An osmotically inflatable seal to treat endoleaks of type 1. J. Mech. Med. Biol. 12, 1250070 (2012)
Chen, L., Yin, F.C.P., May-Newman, K.: The structure and mechanical properties of the mitral valve leaflet-strut chordae transition zone. J. Biomech. Eng. 126, 244–251 (2004)
Chen, H., Zhao, X., Lu, X., Kassab, G.: Nonlinear micromechanics of soft tissues. Int. J. Non-Linear Mech. 56, 79–85 (2013)
Cheng, T., Dai, C., Gan, R.Z.: Viscoelastic properties of human tympanic membrane. Ann. Biomed. Eng. 35, 305–314 (2007)
Cheng, T., Gan, R.Z.: Mechanical properties of anterior malleolar ligament from experimental measurement and material modeling analysis. Biomech. Model. Mechanobiol. 7, 387–394 (2008)
Choi, H.S., Vito, R.P.: Two-dimensional stress-strain relationship for canine pericardium. J. Biomech. Eng. 112, 153–159 (1990)
Chuong, C.J., Fung, Y.C.: Three-dimensional stress distribution in arteries. J. Biomech. Eng. 105(3), 268–274 (1983)
Ciarletta, P., Izzo, I., Micera, S., Tendick, F.: Stiffening by fiber reinforcement in soft materials: a hyperelastic theory at large strains and its application. J. Mech. Behav. Biomed. Mater. 4, 1359–1368 (2011)
Costa, K.D., Hunter, P.J., Waldman, L.K., Guccione, J.M., Mc Culloc, A.: A three-dimensional finite element method for large elastic deformations of ventricular myocardium: Part II—prolate-spherical coordinates. J. Biomech. Eng. 118, 464–472 (1996)
Criscione, J.C., Douglas, A.S., Hunter, W.C.: Physically based strain invariants set for materials exhibiting transversely isotropic behavior. J. Mech. Phys. Solids 49, 871–891 (2001)
Criscione, J.C., Mc Culloch, A.D., Hunter, W.C.: Constitutive framework optimized for myocardium and other high-strain, laminar materials with one fiber family. J. Mech. Phys. Solids 50, 1691–1702 (2002)
deBotton, G., Hariton, I., Socolsky, E.A.: Neo-Hookean fiber-reinforced composites in finite elasticity. J. Mech. Phys. Solids 54, 533–559 (2006)
deBotton, G., Shmuel, G.: Mechanics of composites with two families of finitely extensible fibers undergoing large deformations. J. Mech. Phys. Solids 57, 1165–1181 (2009)
Delfino, A., Stergiopulos, N., Moore, J.E. Jr, Meister, J.J.: Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation. J. Biomech. 30(8), 777–786 (1997)
Demiray, H., Weizsacker, H.W., Pascale, K., Erbay, H.: A stress strain relation for a rat abdominal aorta. J. Biomech. 21, 369–374 (1988)
Demirkoparan, H., Pence, T.: Swelling of an internally pressurized nonlinearly elastic tube with fiber reinforcing. Int. J. Solids Struct. 44, 4009–4029 (2007)
Demirkoparan, H., ans, T.J.P., Wineman, A.: On dissolution and reassembly of filamentary reinforcing networks in hyperelastic materials. Proc. R. Soc. A 465, 867–894 (2009)
Destrade, M., Gilchrist, M.D., Prikazchikov, D.A., Saccomandi, G.: Surface instability of sheared soft tissues. J. Biomech. Eng. 130, 1–6 (2008). 061007
Doll, S., Schweizerhof, K.: On the development of volumetric strain energy functions. J. Appl. Mech. 67, 17–21 (2000)
Dorfmann, A.L., Woods, W.A. Jr., Trimmer, B.A.: Muscle performance in a soft-bodied terrestrial crawler: constitutive modeling of strain-rate dependency. J. R. Soc. Interface 5, 349–362 (2008)
Doyle, M.G., Tavoularis, S., Bourgault, Y.: Adaptation of a rabbit myocardium material model for use in a canine left ventricle simulation study. J. Biomech. Eng. 132, 041006 (2010)
Driessen, N.J.B., Bouten, C.V.C., Baaijens, F.P.T.: A structural constitutive model for collagenous cardiovascular tissues incorporating the angular fiber distribution. J. Biomed. Eng. 124, 494–503 (2005)
Ebbing, V., Schröder, J., Neff, P.: Approximation of anisotropic elasticity tensors at the reference state with polyconvex energies. Arch. Appl. Mech. 79, 651–657 (2009)
Ehret, A.E., Itskov, M.: A polyconvex hyperelastic model for fiber-reinforced materials in application to soft tissues. J. Mater. Sci. 42, 8853–8863 (2007)
Einstein, D.R., Freed, A.D., Stander, N., Fata, B., Vesel, I.: Inverse parameter fitting of biological tissues: a response surface approach. Ann. Biomed. Eng. 33, 1819–1830 (2005)
Epstein, E.H., Munderloh, N.H.: Isolation and characterisation of cnbr peptides of human [α 1(iii)]3 collagen and tissue distribution [α 1(i)]2 α 2 and [α 1(iii)]3 collagen. J. Biol. Chem. 250, 9304–9312 (1975)
Ericksen, J.L., Rivlin, R.S.: Large elastic deformations of homogeneous anisotropic materials. Arch. Ration. Mech. Anal. 3, 281–301 (1954)
Federico, S., Grillo, A., Imatani, S., Giaquinta, G., Herzog, W.: An energetic approach to the analysis of anisotropic hyperelastic materials. Int. J. Eng. Sci. 46, 164–181 (2008)
Feng, Y., Okamoto, R.J., Namani, R., Genin, G.M., Bayly, P.V.: Measurements of mechanical anisotropy in brain tissue and implications for transversely isotropic material models of white matter. J. Mech. Behav. Biomed. Mater. 23, 117–132 (2013)
Flory, P.J.: Statistical Mechanics of Chain Molecules (1969)
Flynn, C., Rubin, M.B.: An anisotropic discrete fibre model based on a generalised strain invariant with application to soft biological tissues. Int. J. Eng. Sci. 60, 66–76 (2012)
Freed, A.D., Einstein, D.R., Vesely, I.: Invariant formulation for dispersed transverse isotropy in aortic heart valves. Biomech. Model. Mechanobiol. 4, 100–117 (2005)
Freed, A.D., Einstein, D.R.: An implicit elastic theory for lung parenchyma. Int. J. Eng. Sci. 62, 31–47 (2013)
Fung, Y.C., Fronek, K., Patitucci, P.: Pseudoelasticity of arteries and the choice of its mathematical expression. Am. J. Physiol. 237, H620–H631 (1979)
Fung, Y.C., Liu, S., Zhou, J.: Remodeling of the constitutive equation while a blood vessel remodels itself under stress. J. Biomech. Eng. 115, 453–459 (1993)
Galle, B., Ouyang, H., Shi, R., Nauman, E.: A transversely isotropic constitutive model of excised guinea pig spinal cord white matter. J. Biomech. 43, 2839–2843 (2010)
Garcia, J.J., Cortes, D.H.: A nonlinear biphasic viscohyperelastic model for articular cartilage. J. Biomech. 39, 2991–2998 (2006)
Garikipati, K., Arruda, E.M., Grosh, K., Narayanan, H., Calve, S.: A continuum treatment of growth in biological tissue: the coupling of mass transport and mechanics. J. Mech. Phys. Solids 52, 1595–1625 (2004)
Gasser, T.C., Holzapfel, G.A.: A rate-independent elastoplastic constitutive model for biological fiber-reinforcedcomposites at finite strains: continuum basis, algorithmic formulationand finite element implementation. Comput. Mech. 29, 340–360 (2002)
Gasser, T.C., Ogden, R.W., Holzapfel, G.A.: Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3, 15–35 (2006)
Ghaemi, H., Behdinan, K., Spence, A.D.: In vitro technique in estimation of passive mechanical properties of bovine heart. Part II. Constitutive relation and finite element analysis. Med. Eng. Phys. 31, 83–91 (2009)
Gilchrist, M.D., Murphy, J.G., Rashid, B.: Generalisations of the strain-energy function of linear elasticity to model biological soft tissue. Int. J. Non-Linear Mech. 47, 268–272 (2012)
Girard, M.J.A., Downs, J.C., Burgoyne, C.F., Francis Suh, J.-K.: Peripapillary and posterior scleral mechanics—Part I: development of an anisotropic hyperelastic constitutive model. J. Biomech. Eng. 131, 051011 (2009)
Göktepe, S., Acharya, S.N.S., Wong, J., Kuhl, E.: Computational modeling of passive myocardium. Int. J. Numer. Methods Biomed. Eng. 27, 1–12 (2011)
Gras, L.L., Mitton, D., Viot, P., Laporte, S.: Hyper-elastic properties of the human sternocleidomastoideus muscle in tension. J. Mech. Behav. Biomed. Mater. 15, 131–140 (2012)
Groves, R.B., Coulman, S.A., Birchall, J.C., Evans, S.L.: An anisotropic, hyperelastic model for skin: experimental measurements, finite element modelling and identification of parameters for human and murine skin. J. Mech. Behav. Biomed. Mater. 18, 167–180 (2013)
Guo, Z.Y., Peng, X.Q., Moran, B.: A composites-based hyperelastic constitutive model for soft tissue with application to the human annulus fibrosus. J. Mech. Phys. Solids 54, 1952–1971 (2006)
Guo, Z.Y., Peng, X.Q., Moran, B.: Large deformation response of a hyperelastic fibre reinforced composite: theoretical model and numerical validation. Composites, Part A, Appl. Sci. Manuf. 38, 1842–1851 (2007)
Guo, Z.Y., Peng, X.Q., Moran, B.: Mechanical response of neo-Hookean fiber reinforced incompressible nonlinearly elastic solids. Int. J. Solids Struct. 44, 1949–1969 (2007)
Harb, N., Labed, N., Domaszewski, M., Peyraut, F.: A new parameter identification method of soft biological tissue combining genetic algorithm with analytical optimization. Comput. Methods Appl. Mech. Eng. 200, 208–215 (2011)
Harrison, S., Bush, M., Petros, P.: Towards a novel tensile elastometer for soft tissue. Int. J. Mech. Sci. 50, 626–640 (2008)
Hart-Smith, L.J.: Elasticity parameters for finite deformations of rubber-like materials. Z. Angew. Math. Phys. 17, 608–626 (1966)
Hartmann, S.: Parameter estimation of hyperelasticity relations of generalized polynomial-type with constraint conditions. Int. J. Solids Struct. 38, 7999–8018 (2001)
Hartmann, S., Neff, P.: Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for near-incompressibility. Int. J. Solids Struct. 40, 2767–2791 (2003)
Haslach, H.W.: Nonlinear viscoelastic, thermodynamically consistent, models for biological soft tissue. Biomech. Model. Mechanobiol. 3, 172–189 (2005)
Helfenstein, J., Jabareen, M., Mazza, E., Govindjee, S.: On non-physical response in models for fiber-reinforced hyperelastic materials. Int. J. Solids Struct. 47, 2056–2061 (2010)
Hernandez, B., Peña, E., Pascual, G., Rodriguez, M., Calvo, B., Doblaré, M., Bellon, J.M.: Mechanical and histological characterization of the abdominal muscle. a previous step to modelling hernia surgery. J. Mech. Behav. Biomed. Mater. 4, 392–404 (2011)
Hollingsworth, N.T., Wagner, D.R.: Modeling shear behavior of the annulus fibrosus. J. Mech. Behav. Biomed. Mater. 4, 1103–1114 (2011)
Holmes, M., Mow, V.C.: The non-linear characteristics of soft gels and hydrated connective tissues in ultrafiltration. J. Biomech. 23, 1145–1156 (1990)
Holzapfel, G.A., Gasser, T.C., Ogden, R.W.: A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61, 1–48 (2000)
Holzapfel, G.A., Gasser, T.C., Stadler, M.: A structural model for the viscoelastic behavior of arterial walls: continuum formulation and finite element analysis. Eur. J. Mech. A, Solids 21, 441–463 (2002)
Holzapfel, G.A., Gasser, T.C., Ogden, R.W.: Comparison of multi-layer structural model for arterial walls with a Fung-type model, and issues of material stability. J. Biomech. Eng. 126, 264–275 (2004)
Holzapfel, G.A., Sommer, G., Gasser, C.T., Regitnig, P.: Determination of the layer-specific mechanical properties of human coronary arteries with non-atherosclerotic intimal thickening, and related constitutive modelling. Am. J. Physiol., Heart Circ. Physiol. 289, 2048–2058 (2005)
Holzapfel, G.A., Stadler, M., Gasser, T.C.: Changes in the mechanical environment of stenotic arteries during interactionwith stents: computational assessment of parametric stent design. J. Biomech. Eng. 127, 166–180 (2005)
Holzapfel, G.A., Mulvihill, J.J., Cunnane, E.M., Walsh, M.T.: Computational approaches for analyzing the mechanics of atherosclerotic plaques: a review. J. Biomath. 47, 859–869 (2014)
Horgan, C.O., Saccomandi, G.: Simple torsion of isotropic, hyperelastic, incompressible materials with limiting chain extensibility. J. Elast. 56, 159–170 (1999)
Horgan, C.O., Saccomandi, G.: A new constitutive theory for fiber-reinforced incompressible nonlinearly elastic solids. J. Mech. Phys. Solids 53, 1985–2015 (2005)
Horgan, C.O., Smayda, M.G.: The importance of the second strain invariant in the constitutive modeling of elastomers and soft biomaterials. Mech. Mater. 51, 43–52 (2012)
Hostettler, A., George, D., Rémond, Y., Nicolau, S.A., Soler, L., Marescaux, J.: Bulk modulus and volume variation measurement of the liver and the kidneys in vivo using abdominal kinetics during free breathing. Comput. Methods Programs Biomed. 100, 149–157 (2010)
Humphrey, J.D., Yin, F.C.P.: On constitutive relations and finite deformations of passive cardiac tissue: I. A pseudo strain-energy approach. J. Biomech. Eng. 109, 298–304 (1987)
Humphrey, J.D., Strumph, R.K., Yin, F.C.P.: Determination of a constitutive relation for passive myocardium: I. A new functional form. J. Biomech. Eng. 15, 1413–1418 (1990)
Humphrey, J.D.: Mechanics of arterial wall: review and directions. Crit. Rev. Biomed. Eng. 23, 1–162 (1995)
Humphrey, J.D.: Cardiovascular Solid Mechanics. Cells, Tissues and Organs. Springer, New York (2002)
Humphrey, J.D.: Continuum biomechanics of soft biological tissues. Proc. R. Soc. Lond. A 459, 3–46 (2003)
Hurschler, C., Loitz-Ramage, B., Vanderby, R. Jr: A structurally based stress-stretch relationship for tendon and ligament. J. Biomech. Eng. 119, 392–399 (1997)
Itskov, M., Aksel, N.: A class of orthotropic and transversely isotropic hyperelastic constitutive models based on a polyconvex strain energy function. Int. J. Solids Struct. 41, 3833–3848 (2004)
Itskov, M., Ehret, A.E., Mavrilas, D.: A polyconvex anisotropic strain energy function for soft collagenous tissues. Biomech. Model. Mechanobiol. 5, 17–26 (2006)
Jemiolo, S., Telega, J.J.: Transversely isotropic materials undergoing large deformations and application to modelling soft tissues. Mech. Res. Commun. 28, 397–404 (2001)
Kaliske, M.: A formulation of elasticity and viscoelasticity for fibre reinforced material at small and finite strains. Comput. Methods Appl. Mech. Eng. 185, 225–243 (2000)
Kalita, P., Schaefer, R.: Mechanical models of artery walls. Arch. Comput. Methods Eng. 15, 1–36 (2008)
Karsaj, I., Sansour, C., Soric, J.: The modelling of fibre reorientation in soft tissue. Biomech. Model. Mechanobiol. 8, 359–370 (2009)
Kastelic, J., Palley, I., Baer, E.: A structural mechanical model for tendon crimping. J. Biomech. 13, 887 (1980)
Kaster, T., Sack, I., Samani, A.: Measurement of the hyperelastic properties of ex vivo brain tissue slices. J. Biomech. 44, 1158–1163 (2011)
Kas’yanov, V.A., Rachev, A.I.: Deformation of blood vessels upon stretching, internal pressure, and torsion. Mech. Compos. Mater. 16, 76–80 (1990)
Kloczkowski, A.: Application of statistical mechanics to the analysis of various physicalproperties of elastomeric networks—a review. Polymer 43, 1503–1525 (2002)
Kloppel, T., Wall, W.A.: A novel two-layer, coupled finite element approach for modeling the nonlinear elastic and viscoelastic behavior of human erythrocytes. Biomech. Model. Mechanobiol. 10, 445–459 (2011)
Knowles, J.K.: The finite anti-plane shear field near the tip of a crack for a class of incompressible elastic solid. Int. J. Fract. 13, 611–639 (1977)
Kratky, O., Porod, G.: Röntgenuntersuchungen gelöster fadenmoleküle. Recl. Trav. Chim. 68, 1106–1122 (1949)
Kroon, M., Holzapfel, G.A.: A new constitutive model for multilayered collagenous tissues. J. Biomech. 41, 2766–2771 (2008)
Kuhl, E., Ramm, E.: Microplane modelling of cohesive frictional materials. Eur. J. Mech. A, Solids 19, S121–S143 (2000)
Kuhl, E., Garikipati, K., Arruda, E.M., Grosh, K.: Remodeling of biological tissue: mechanically induced reorientation of atransversely isotropic chain network. J. Mech. Phys. Solids 53, 1552–1573 (2005)
Kuhl, E., Menzel, A., Garikipati, K.: On the convexity of transversely isotropic chain network models. Philos. Mag. 86, 3241–3258 (2006)
Kuhn, W., Grün, F.: Beziehunger zwichen elastischen konstanten und dehnungsdoppelbrechung hochelastischerstoffe. Kolloideitschrift 101, 248–271 (1942)
Labrosse, M.R., Beller, C.J., Mesana, T., Veinot, J.P.: Mechanical behavior of human aortas: experiments, material constants and 3-D finite element modeling including residual stress. J. Biomech. 42, 996–1004 (2009)
Lanchares, E., Calvo, B., Cristobal, J.A., Doblaré, M.: Finite element simulation of arcuates for astigmatism correction. J. Biomech. 41, 797–805 (2008)
Lanir, Y.: A structural theory for the homogeneous biaxial stress-strain relationship in flat collagenous tissues. J. Biomech. 12, 423–436 (1979)
Lapeer, R.J., Gasson, P.D., Karri, V.: Simulating plastic surgery: from human skin tensile tests, through hyperelastic finite element models to real-time haptics. Prog. Biophys. Mol. Biol. 103, 208–216 (2010)
Li, W.G., Hill, N.A., Ogden, R.W., Smythe, A., Majeed, A.W., Bird, N., Luo, X.Y.: Anisotropic behaviour of human gallbladder walls. J. Mech. Behav. Biomed. Mater. 20, 363–375 (2013)
Li, Z., Alonso, J.E., Kim, J.-E., Davidson, J., Etheridge, B.S., Eberhardt, A.W.: Three-dimensional finite element models of the human pubic symphysis with viscohyperelastic soft tissues. Ann. Biomed. Eng. 34, 1452–1462 (2006)
Limbert, G., Taylor, M.: On the constitutive modeling of biological soft connective tissues. A general theoretical framework and explicit forms of the tensors of elasticity for strongly anisotropic continuum fiber-reinforced composites at finite strain. Int. J. Solids Struct. 39, 2343–2358 (2002)
Limbert, G., Middleton, J.: A transversely isotropic viscohyperelastic material application to the modeling of biolgical soft connective tissues. Int. J. Solids Struct. 41, 4237–4260 (2004)
Limbert, G., Middleton, J.: A constitutive model of the posterior cruciate ligament. Med. Eng. Phys. 28, 99–113 (2006)
Lin, D.H.S., Yin, F.C.P.: A multiaxial constitutive law for mammalian left ventricular myocardium in steady-state barium contracture or tetanus. J. Biomech. Eng. 120, 504–517 (1998)
Lister, K., Gao, Z., Desai, J.P.: Development of in vivo constitutive models for liver: application to surgical simulation. Ann. Biomed. Eng. 39, 1060–1073 (2011)
Lopez-Pamies, O., Idiart, M.I.: Fiber-reinforced hyperelastic solids: a realizable homogenization constitutive theory. J. Eng. Math. 68, 57–83 (2010)
Lu, J., Zhang, L.: Physically motivated invariant formulation for transversely isotropic hyperelasticity. Int. J. Solids Struct. 42, 6015–6031 (2005)
Lu, J., Zhou, X., Raghavan, M.L.: Computational method of inverse elastostatics for anisotropic hyperelastic solids. Int. J. Numer. Methods Eng. 69, 1239–1261 (2007)
Lurding, D., Basar, Y., Hanskotter, U.: Application of transversely isotropic materials to multi-layer shell elements undergoing finite rotations and large strains. Int. J. Solids Struct. 38, 9493–9503 (2001)
Maher, E., Creane, A., Lally, C., Kelly, D.J.: An anisotropic inelastic constitutive model to describe stress softening and permanent deformation in arterial tissue. J. Mech. Behav. Biomed. 12, 9–19 (2012)
Malvè, M., Pérez del Palomar, A., Trabelsi, O., Lopez-Villalobos, J.L., Ginel, A., Doblaré, M.: Modeling of the fluid structure interaction of a human trachea under different ventilation conditions. Int. Commun. Heat Mass Transf. 38, 10–15 (2011)
Marieb, E., Hoehn, K.: Human Anatomy & Physiology. Pearson Education, Upper Saddle River (2010)
Markert, B., Ehlers, W., Karajan, N.: A general polyconvex strain-energy function for fiber-reinforced materials. Proc. Appl. Math. Mech. 5, 245–246 (2005)
Martins, J.A.C., Pires, E.B., Salvador, R., Dinis, P.B.: A numerical model of passive and active behaviour of skeletal muscles. Comput. Methods Appl. Mech. Eng. 151, 419–433 (1998)
Masson, I., Boutouyrie, P., Laurent, S., Humphrey, J.D., Zidi, M.: Characterization of arterial wall mechanical behavior and stresses from human clinical data. J. Biomech. 41, 2618–2627 (2008)
Masson, I., Fassot, C., Zidi, M.: Finite dynamic deformations of a hyperelastic, anisotropic, incompressible and prestressed tube. Applications to in vivo arteries. Eur. J. Mech. A, Solids 29, 523–529 (2010)
May-Newman, K., Yin, F.C.P.: A constitutive law for mitral valve tissue. Am. J. Physiol. 269, 1319–1327 (1998)
May-Newman, K., Lam, C., Yin, F.C.P.: A hyperelastic constitutive law for aortic valve tissue. J. Biomech. Eng. 131, 1–7 (2009)
Menzel, A., Steinmann, P.: On the comparison of two strategies to formulate orthotropic hyperelasticity. J. Elast. 62, 171–201 (2001)
Menzel, A., Waffenschmidt, T.: A microsphere-based remodelling formulation for anisotropic biological tissues. Philos. Trans. R. Soc. A 367, 3499–3523 (2009)
Merodio, J., Pence, T.J.: Kink surfaces in a directionally reinforced neo-Hookean material under plane deformation: I. Mechanical equilibrium. J. Elast. 62, 119–144 (2001)
Merodio, J., Pence, T.J.: Kink surfaces in a directionally reinforced neo-Hookean material under plane deformation: II. Kink band stability and maximally dissipative band broadening. J. Elast. 62, 145–170 (2001)
Merodio, J., Ogden, R.W.: Material instabilities in fiber-reinforced nonlinearly elastic solids under plane deformation. Arch. Mech. 54, 525–552 (2002)
Merodio, J., Ogden, R.W.: Instabilities and loss of ellipticity in fiber-reinforced compressible non-linearly elastic solids under plane deformation. Int. J. Solids Struct. 30, 4707–4727 (2003)
Merodio, J., Ogden, R.W.: Mechanical response of fiber-reinforced incompressible non-linearly elastic solids. Int. J. Non-Linear Mech. 40, 213–227 (2005)
Merodio, J., Ogden, R.W.: On tensile instabilities and ellipticity loss in fiber-reinforced incompressible non-linearly elastic solids. Mech. Res. Commun. 32, 290–299 (2005)
Merodio, J.: A note on tensile instabilities and loss of ellipticity for a fiber-reinforced nonlinearly elastic solid. Arch. Mech. 58, 293–303 (2006)
Miehe, C., Göktepe, S., Lulei, F.: A micro-macro approach to rubber-like materials—Part I: the non-affine micro-sphere model of rubber elasticity. J. Mech. Phys. Solids 52, 2617–2660 (2004)
Mielke, A.: Necessary and sufficient conditions for polyconvexity of isotropic functions. J. Convex Anal. 12, 291–314 (2005)
Murphy, J.: Transversely isotropic biological, soft tissue must be modelled using both anisotropic invariants. Eur. J. Mech. A, Solids 42, 90–96 (2013)
Nash, M.P., Hunter, P.J.: Computational mechanics of the heart: from tissue structure to ventricular function. J. Elast. 61, 113–141 (2000)
Natali, A.N., Pavan, P.G., Carniel, E.L., Dorow, C.: A transversally isotropic elasto-damage constitutive model for the periodontal ligament. Comput. Methods Biomech. Biomed. Eng. 6, 329–336 (2003)
Natali, A.N., Carniel, E.L., Gregersen, H.: Biomechanical behaviour of oesophageal tissues: material and structural configuration, experimental data and constitutive analysis. Med. Eng. Phys. 31, 1056–1062 (2009)
Nerurkar, N.L., Mauck, R.L., Elliott, D.M.: Modeling interlamellar interactions in angle-ply biologic laminates for annulus fibrosus tissue engineering. Biomech. Model. Mechanobiol. 10, 973–984 (2011)
Nguyen, T.D., Boyce, B.L.: An inverse finite element method for determining the anisotropic properties of the cornea. Biomech. Model. Mechanobiol. 10, 323–337 (2011)
Nicholson, D.W.: Tangent modulus matrix for finite element analysis of hyperelastic materials. Acta Mech. 112, 187–201 (1995)
Nierenberger, M., Rémond, Y., Ahzi, S.: A new multiscale model for the mechanical behavior of vein walls. J. Mech. Behav. Biomed. Mater. 23, 32–43 (2013)
Ning, X., Zhu, Q., Lanir, Y., Margulies, S.S.: A transversely isotropic viscoelastic constitutive equation for brainstem undergoing finite deformation. J. Biomech. Eng. 128, 925–933 (2006)
O’Connell, G.D., Guerin, H.L., Elliott, D.M.: Theoretical and uniaxial experimental evaluation of human annulus fibrosus degeneration. J. Biomech. Eng. 131, 111007 (2009)
Ogden, R.W.: Large deformation isotropic elasticity—on the correlation of theory and experiment for incompressible rubber like solids. Proc. R. Soc. Lond. A 326, 565–584 (1972)
Ogden, R.W.: Non-linear Elastic Deformations. Dover, New York (1997)
Ogden, R.W.: Nonlinear elasticity, anisotropy, material stability and residual stresses in soft tissue. In: Holzapfel, G.A., Ogden, R.W. (eds.) Biomechanics of Soft Tissue in Cardiovascular System. CISM Courses and Lecture, vol. 441. Springer, New York (2003)
Ogden, R.W., Saccomandi, G.: Introducing mesoscopic information into constitutive equations for arterial walls. Biomech. Model. Mechanobiol. 6, 333–344 (2007)
Paetsch, C., Trimmer, B.A., Dorfmann, A.: A constitutive model for active–passive transition of muscle fibers. Int. J. Non-Linear Mech. 47, 377–387 (2012)
Paetsch, C., Dorfmann, A.: Non-linear modeling of active biohybrid materials. Int. J. Non-Linear Mech. 56, 105–114 (2013)
Pandolfi, A., Maganiello, F.: A model for the human cornea: constitutive formulation and numerical analysis. Biomech. Model. Mechanobiol. 5, 237–246 (2006)
Pandolfi, A., Vasta, M.: Fiber distributed hyperelastic modeling of biological tissues. Mech. Mater. 44, 151–162 (2012)
Papaharilaou, Y., Ekaterinaris, J.A., Manousakid, E., Katsamouris, A.N.: A decoupled fluid structure approach for estimating wall stress in abdominal aortic aneurysms. J. Biomech. 40, 367–377 (2007)
Parente, M.P.L., Natal Jorge, R.M., Mascarenhas, T., Fernandes, A.A., Martins, J.A.C.: The influence of the material properties on the biomechanical behavior of the pelvic floor muscles during vaginal delivery. J. Biomech. 42, 1301–1306 (2009)
Park, H.C., Youn, S.K.: Finite element analysis and constitutive modelling of anisotropic nonlinear hyperelastic bodies with convected frames. Comput. Methods Appl. Mech. Eng. 151, 605–618 (1998)
Peña, E., Peña, J.A., Doblaré, M.: On the Mullins effect and hysteresis of fibered biological materials: a comparison between continuous and discontinuous damage models. Int. J. Solids Struct. 46, 1727–1735 (2009)
Peña, E., Calvo, B., Martinez, M.A., Martins, P., Mascarenhas, T., Jorge, R.M.N., Ferreira, A., Doblaré, M.: Experimental study and constitutive modeling of the viscoelastic mechanical properties of the human prolapsed vaginal tissue. Biomech. Model. Mechanobiol. 9, 35–44 (2010)
Peña, E.: Prediction of the softening and damage effects with permanent set in fibrous biological materials. J. Mech. Phys. Solids 59, 1808–1822 (2011)
Peña, E., Martins, P., Mascarenhasd, T., Natal Jorge, R.M., Ferreira, A., Doblaré, M., Calvo, B.: Mechanical characterization of the softening behavior of human vaginal tissue. J. Mech. Behav. Biomed. Mater. 4, 275–283 (2011)
Peng, X.Q., Guo, Z.Y., Roman, B.: An anisotropic hyperelastic constitutive model with fiber-matrix shear interaction for the human annulus fibrosus. J. Appl. Mech. 73, 815–824 (2006)
Peng, X., Guo, Z., Du, T., Yu, W.R.: A simple anisotropic hyperelastic constitutive model for textile fabrics with application to forming simulation. Composites, Part B, Eng. 52, 275–281 (2013)
Pinsky, P.M., van der Heide, D., Chernyak, D.: Computational modeling of mechanical anisotropy in the cornea and sclera. J. Cataract Refract. Surg. 31, 136–145 (2005)
Prevost, T.P., Balakrishnan, A., Suresh, S., Socrate, S.: Biomechanics of brain tissue. Acta Biomater. 7, 83–95 (2011)
Prot, V., Haaverstad, R., Skallerud, B.: Finite element analysis of the mitral apparatus: annulus shape effect and chordal force distribution. Biomech. Model. Mechanobiol. 8, 43–55 (2009)
Przybylo, P.A., Arruda, E.M.: Experimental investigations and numerical modeling of incompressible elastomersduring non-homogeneous deformations. Rubber Chem. Technol. 71, 730–749 (1998)
Qian, M., Wells, D.M., Jones, A., Becker, A.: Finite element modelling of cell wall properties for onion epidermis using a fibre-reinforced hyperelastic model. J. Struct. Biol. 172, 300–304 (2010)
Qiu, G.Y., Pence, T.: Remarks on the behaviour of a simple directionnally reinforced incompressible non linearly elastic solids. J. Elast. 49, 1–30 (1997)
Quapp, K.M., Weiss, J.A.: Material characterization of human medical collaterial ligament. J. Biomech. Eng. 124, 757–763 (1998)
Quaglini, V., Vena, P., Contro, R.: A discrete-time approach to the formulation of constitutive models for viscoelastic soft tissues. Biomech. Model. Mechanobiol. 3, 85–97 (2004)
Raghavan, M., Webster, M.W., Vorp, D.A.: Ex vivo biomechanical behavior of abdominal aortic aneurysm: assessment using a new mathematical model. Ann. Biomed. Eng. 24, 573–582 (1996)
Raghavan, M., Vorp, D.A.: Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. J. Biomech. 33, 475–482 (2000)
Raghupathy, R., Barocas, V.H.: A closed-form structural model of planar fibrous tissue mechanics. J. Biomech. 42, 1424–1428 (2009)
Rajagopal, K., Bridges, C., Rajagopal, K.R.: Towards an understanding of the mechanics underlying aortic dissection. Biomech. Model. Mechanobiol. 6, 345–359 (2007)
Rebouah, M., Chagnon, G., Favier, D.: Development and modeling of filled silicone architectured membranes. Meccanica (2014). doi: 10.1007/s11012-014-0065-0
Reese, S., Raible, T., Wriggers, P.: Finite element modelling of orthotropic material behaviour in pneumatic membranes. Int. J. Solids Struct. 38, 9525–9544 (2001)
Rief, M., Oesterhelt, F., Heymann, B., Gaub, H.H.E.: Single molecule force spectroscopy on polysaccharides by atomic force microscopy. Science 275, 1295–1297 (1997)
Rivlin, R.S., Saunders, D.W.: Large elastic deformations of isotropic materials—VII. Experiments on the deformation of rubber. Philos. Trans. R. Soc. A 243, 251–288 (1951)
Rodriguez, J.F., Cacho, F., Bea, J.A., Doblaré, M.: A stochastic-structurally based three dimensional finite-strain damage model for fibrous soft tissue. J. Mech. Phys. Solids 54, 864–886 (2006)
Rodriguez, J.F., Ruiz, C., Doblaré, M., Holzapfel, G.A.: Mechanical stresses in abdominal aortic aneurysms: influence of diameter, asymmetry, and material anisotropy. J. Biomech. Eng. 130(2), 021023 (2008)
Rohrle, O., Pullan, A.J.: Three-dimensional finite element modelling of muscle forces during mastication. J. Biomech. 40, 3363–3372 (2007)
Rubin, M.B., Bodner, S.R.: A three-dimensional nonlinear model for dissipative response of soft tissue. Int. J. Solids Struct. 39, 5081–5099 (2002)
Ruter, M., Stein, E.: Analysis, finite element computation and error estimation in transversely isotropic nearly incompressible finite elasticity. Comput. Methods Appl. Mech. Eng. 190, 519–541 (2000)
Sacks, M.S., Gloeckner, D.: Quantification of the fiber architecture and biaxial mechanical behavior of porcine intestinal submucosa. J. Biomed. Mater. Res. 46, 1–10 (1999)
Sacks, M.S.: Biaxial mechanical evaluation of planar biological materials. J. Elast. 61, 199–246 (2000)
Sacks, M.S.: Incorporation of experimentally-derived fiber orientation into a structural constitutive model for planar collageneous tissues. J. Biomech. Eng. 125, 280–287 (2003)
Samani, A., Plewes, D.: A method to measure the hyperelastic parameters of ex vivo breast tissue samples. Phys. Med. Biol. 49, 4395–4405 (2004)
Sansour, C.: On the physical assumptions underlying the volumetric-isochoric split and the case of anisotropy. Eur. J. Mech. A, Solids 27, 28–39 (2008)
Schröder, J., Neff, P.: Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions. Int. J. Solids Struct. 40, 401–445 (2003)
Schröder, J., Neff, P.: On the construction of polyconvex transversely isotropic free energy functions. In: Miehe, C. (ed.) Proceedings of the IUTAM Symposium on Computational Mechanicsof Solids Materials at Large Strains, pp. 171–180. Kluwer Academic, Norwell (2003)
Schröder, J., Neff, P., Balzani, D.: A variational approach for materially stable anisotropic hyperelasticity. Int. J. Solids Struct. 42, 4352–4371 (2005)
Schröder, J., Neff, P., Ebbing, V.: Anisotropic polyconvex energies on the basis of crystallographic motivated structural tensors. J. Mech. Phys. Solids 56, 3486–3506 (2008)
Schröder, J., Neff, P.: Poly-, quasi- and rank-one convexity in applied mechanics. In: CISM International Centre for Mechanical Sciences, vol. 516 (2010)
Schulze-Bauer, C.A.J., Holzapfel, G.A.: Determination of constitutive equations for human arteries from clinicaldata. J. Biomech. 36, 165–169 (2003)
Schwenninger, D., Schumann, S., Guttmann, J.: In vivo characterization of mechanical tissue properties of internal organs using endoscopic microscopy and inverse finite element analysis. J. Biomech. 44, 487–493 (2011)
Shin, T.J., Vito, R.P., Johnson, L.W., McCarey, B.E.: The distribution of strain in the human cornea. J. Biomech. 30, 497–503 (1997)
Simpson, H.C., Spector, S.J.: On copositive matrices and strong ellipticity for isotropic elastic materials. Arch. Ration. Mech. Anal. 84, 55–68 (1983)
Singh, F., Katiyar, V.K., Singh, B.P.: A new strain energy function to characterize apple and potato tissues. J. Food Eng. 118(2), 178–187 (2013)
Smith, G.F., Rivlin, R.S.: The strain energy function for anisotropic elastic materials. Trans. Am. Math. Soc. 88, 175–193 (1958)
Soldatos, K.P.: On loss of ellipticity in second-gradient hyper-elasticity of fibre-reinforced materials. Int. J. Non-Linear Mech. 47, 117–127 (2012)
Spencer, A.J.M.: Theory of invariants. In: Eringen, A.C. (ed.) Continuum Physics. Academic Press, San Diego (1971)
Spencer, A.J.M.: Continuum Theory of the Mechanics of Fibre–Reinforced Composites. Springer, New York (1984)
Spencer, A.J.M.: Isotropic polynomial invariants and tensor functions. In: CISM Courses and Lectures, vol. 292, pp. 141–169. Springer, Berlin (1987)
Steigmann, D.: On isotropic, frame-invariant, polyconvex strain-energy functions. Q. J. Mech. Appl. Math. 56, 483–491 (2003)
Steinmann, D.: Frame-invariant polyconvex strain-energy functions for some anisotropic solids. Math. Mech. Solids 8, 496–506 (2003)
Stewart, M.L., Smith, L.M., Hall, N.: A numerical investigation of breast compression: a computer-aided design approach for prescribing boundary conditions. IEEE Trans. Biomed. Eng. 58(10), 2876–2884 (2011)
Sun, W., Sacks, M.S.: Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues. Biomech. Model. Mechanobiol. 4, 190–199 (2005)
Sverdlik, A., Lanir, Y.: Time-dependent mechanical behavior of sheep digital tendons, including the effects of preconditioning. J. Biomech. Eng. 124, 78–84 (2002)
Takamizawa, K., Hayashi, K.: Strain energy density function and uniform strain hypothesis for arterial mechanics. J. Biomech. 20, 7–17 (1987)
Tang, C.Y., Zhang, G., Tsui, C.P.: A 3D skeletal muscle model coupled with active contraction of muscle fibres and hyperelastic behaviour. J. Biomech. 42, 865–872 (2009)
Tang, D., Yang, C., Kobayashi, S., Zheng, J., Woodard, P.K., Teng, Z., Billiar, K., Bach, K., Ku, R.: 3D MRI-based anisotropic FSI models with cyclic bending for human coronary atherosclerotic plaque mechanical analysis. J. Biomech. Eng. 131, 061010 (2009)
Toungara, M., Chagnon, G., Geindreau, C.: Numerical analysis of the wall stress in abdominal aortic aneurysm: influence of the material model near-incompressibility. J. Mech. Med. Biol. 12, 1250005 (2012)
Trabelsi, O., Pérez del Palomar, A., Lopez-Villalobos, J.L., Ginel, A., Doblaré, M.: Experimental characterization and constitutive modeling of the mechanical behavior of the human trachea. Med. Eng. Phys. 32, 76–82 (2010)
Treloar, L.R.G.: The elasticity of a network of long chains molecules 1. Trans. Faraday Soc. 39, 36–41 (1943)
Treloar, L.R.G.: The elasticity of a network of long chains molecules 2. Trans. Faraday Soc. 39, 241–246 (1943)
Triantafyllidis, N., Abeyaratne, R.C.: Instability of a finitely deformed fiber-reinforced elastic material. J. Appl. Mech. 50, 149–156 (1983)
Vahapoglu, V., Karadeniz, S.: Constitutive equations for isotropic rubber-like materials using phenomenological approach: a bibliography (1930–2003). Rubber Chem. Technol. 79, 489–499 (2006)
Vaishnav, R.N., Young, J.T., Patel, D.J.: Distribution of stresses and of strain-energy density through the wall thickness in a canine aortic segment. Circ. Res. 32, 577–583 (1973)
Valencia, A., Baeza, F.: Numerical simulation of fluid–structure interaction in stenotic arteries considering two layer nonlinear anisotropic structural model. Int. Commun. Heat Mass Transf. 36, 137–142 (2009)
van Dam, E.A., Dams, S.D., Peters, G.W.M., Rutten, M.C.M., Schurink, G.W.H., Buth, J., van de Vosse, F.N.: Non-linear viscoelastic behavior of abdominal aortic aneurysm thrombus. Biomech. Model. Mechanobiol. 7, 127–137 (2008)
Vande Geest, J.P., Sacks, M.S., Vorp, D.A.: The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta. J. Biomech. 39, 1324–1334 (2006)
Vasta, M., Pandolfi, A., Gizzi, A.: A fiber distributed model of biological tissues. Proc. IUTAM 6, 79–86 (2013)
Velardi, F., Fraternali, F., Angelillo, M.: Anisotropic constitutive equations and experimental tensile behavior of brain tissue. Biomech. Model. Mechanobiol. 5, 53–61 (2006)
Vito, R.P., Dixon, S.A.: Blood vessel constitutive models 1995–2002. Annu. Rev. Biomed. Eng. 5, 413–439 (2003)
Volokh, K.Y., Vorp, D.A.: A model of growth and rupture of abdominal aortic aneurysm. J. Biomech. 41, 1015–1021 (2008)
Walton, J.R., Wilber, J.P.: Sufficient conditions for strong ellipticity for a class of anisotropic materials. Int. J. Non-Linear Mech. 38, 441–455 (2003)
Weiss, J.A., Maker, B.N., Govindjee, S.: Finite implementation of incompressible, transversely isotropic hyperelasticity. Comput. Methods Appl. Mech. Eng. 135, 107–128 (1996)
Wilber, J.P., Walton, J.R.: The convexity properties of a class of constitutive models for biological soft tissues. Math. Mech. Solids 7, 217–235 (2002)
Wineman, A.: Some results for generalized neo-Hookean elastic materials. Int. J. Non-Linear Mech. 40, 271–279 (2005)
Yosibash, Z., Priel, E.: p-fems for hyperelastic anisotropic nearly incompressible materials under finite deformations with applications to arteries simulation. Int. J. Numer. Methods Eng. 88, 1152–1174 (2011)
Yu, J., Zeng, Y., Zhao, J., Liao, D., Gregersen, H.: Quantitative analysis of collagen fiber angle in the submucosa of small intestine. Comput. Biol. Med. 34(34), 539–550 (2004)
Zee, L., Sternberg, E.: Ordinary and strong ellipticity in the equilibrium theory of incompressible hyperelastic solids. Arch. Ration. Mech. Anal. 83, 53–90 (1983)
Zhang, J.P., Rajagopal, K.R.: Some inhomogeneous motions and deformations within the context of a non-linear elastic solid. Int. J. Eng. Sci. 30, 919–938 (1992)
Zhang, Y., Dunn, M.L., Drexler, E.S., McCowan, C.N., Slifka, A.J., Ivy, D.D., Shandas, R.: A microstructural hyperelastic model of pulmonary arteries under normo- and hypertensive conditions. Ann. Biomed. Eng. 33, 1042–1052 (2005)
Zhao, X., Raghavan, M.L., Lu, J.: Identifying heterogeneous anisotropic properties in cerebral aneurysms: a point wise approach. Biomech. Model. Mechanobiol. 10, 177–189 (2011)