Hyperbolic volumes of Fibonacci manifolds
Tài liệu tham khảo
J. Conway, “Advanced problem 5327,” Amer. Math. Monthly,72, 915 (1965).
J. Conway, “Solution to Advanced problem 5327,” Amer. Math. Monthly,74, 91–93 (1967).
G. Havas, “Computer aided determination of a Fibonacci group,” Bull. Austral. Math. Soc.,15, 297–305 (1976).
M. F. Newman, “Proving a group infinite,” Arch. Math.,54, No. 3, 209–211 (1990).
H. Helling, A. C. Kim, and J. Mennicke, A Geometric Study of Fibonacci Groups [Preprint/SFB-343, Diskrete Strukturen in der Mathematik], Bielefeld (1990).
R. M. Thomas, “The Fibonacci groupsF(2,2m),” Bull. London Math. Soc.,21, No. 5, 463–465 (1989).
D. L. Johnson, J. W. Wamsley, and D. Wright, “The Fibonacci groups,” Proc. London Math. Soc.,29, 577–592 (1974).
H. M. Hilden, M. T. Lozano, and J. M. Montesinos, “The arithmeticity of the figure eight knot orbifolds,” in: Topology'90, Contrib. Res. Semester Low Dimensional Topology, Columbus/OH (USA) 1990, Ohio State Univ. Math. Res. Inst. Publ., 1992, pp. 169–183.
J. Hempel, “The lattice of branched covers over the figure-eight knot,” Topology Appl.,34, No. 2, 183–201 (1990).
S. V. Matveev and A. T. Fomenko, “Constant energy surfaces of Hamiltonian systems, enumeration of three-dimensional manifolds in increasing order of complexity, and computation of volumes of closed hyperbolic manifolds,” Uspekhi Mat. Nauk,43, No. 1, 5–22 (1988).
J. Weeks, Hyperbolic Structures on 3-Manifolds, Ph. D. Thesis, Princeton Univ., Princeton (1985).
W. P. Thurston, The Geometry and Topology of Three-Manifolds, Princeton Univ., Princeton (1980) (Lecture Notes in Math.).
R. Meyerhoff and W. D. Neumann, “An asymptotic formula for the eta invariants of hyperbolic 3-manifolds,” Comment. Math. Helv.,67, 28–46 (1992).
D. Rolfsen, Knots and Links, Publish or Perish Inc., Berkeley, Ca. (1976).
J. Milnor, “Hyperbolic geometry: the first 150 years,” Bull. Amer. Math. Soc., V. 6. P. 9–25 (1982).
È. B. Vinberg, “Volumes of non-Euclidean polyhedrons,” Uspekhi Mat. Nauk,48, No. 2, 17–46 (1993).
W. D. Neumann and D. Zagier, “Volumes of hyperbolic three-manifolds,” Topology,24, No. 3, 307–322 (1985).
R. H. Crowell and R. H. Fox, Introduction to Knot Theory, Ma.: Ginn and Co., Boston (1963).
A. Borel, “Commensurability classes and hyperbolic volumes,” Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4),8, 1–33 (1991).
A. W. Reid, “Arithmeticity of knot complements,” J. London Math. Soc. (2),43, No. 1, 171–184 (1991).
R. Riley, “An elliptical path from parabolic representations to hyperbolic structures,” Lecture Notes in Math.,722, 99–133 (1979).