Hyperbolic twisted torus links

Geometriae Dedicata - Tập 217 - Trang 1-16 - 2023
Thiago de Paiva1
1School of Mathematics, Monash University, Clayton, Australia

Tóm tắt

The twisted torus link T(p, q; r, s) is obtained by twisting r parallel strands of the (p, q)-torus link a total of s full times. In this paper we find all twisted torus links which are hyperbolic for $$\vert s\vert >3$$ .

Tài liệu tham khảo

Birman, J., Kofman, I.: A new twist on Lorenz links. J. Topol. 2(2), 227–248 (2009) Bowman, R.S., Taylor, S., Zupan, A.: Bridge spectra of twisted torus knots. Int. Math. Res. Not. IMRN 16, 7336–7356 (2015) Callahan, P.J., Dean, J.C., Weeks, J.R.: The simplest hyperbolic knots. J. Knot Theory Ramif. 8(3), 279–297 (1999) Champanerkar, A., Futer, D., Kofman, I., Neumann, W., Purcell, J.S.: Volume bounds for generalized twisted torus links. Math. Res. Lett. 18(6), 1097–1120 (2011) Champanerkar, A., Kofman, I., Patterson, E.: The next simplest hyperbolic knots. J. Knot Theory Ramif. 13(7), 965–987 (2004) de Paiva, T.: Unexpected essential surfaces among exteriors of twisted torus knots, arXiv:2012.09599, to appear in Algebr. Geom. Topol de Paiva, T.: Hyperbolic knots given by positive braids with at least two full twists. Proc. Amer. Math. Soc. 150(12), 5449–5458 (2022) de Paiva, T., Purcell, J.S.: Satellites and Lorenz knots, arxiv:2103.09500, (2021) Dean, J.C.: Hyperbolic knots with small Seifert-fibered Dehn surgeries, ProQuest LLC, Ann Arbor, MI, (1996). Thesis (Ph.D.)–The University of Texas at Austin Gordon, C.M., Wu, Y.-Q.: Toroidal and annular Dehn fillings. Proc. London Math. Soc. 78(3), 662–700 (1999) Gordon, C.M., Wu, Y.-Q.: Annular and boundary reducing Dehn fillings. Topology 39(3), 531–548 (2000) Gordon, C.M., Wu, Y.-Q.: Annular Dehn fillings. Comment. Math. Helv. 75(3), 430–456 (2000) Guntel, B.J: Knots with distinct primitive/primitive and primitive/Seifert representatives. J. Knot Theory Ramif. 21(1), 1250015. (2012) Hatcher, A.: Notes on basic 3-manifold topology, (2007) Lee, S.: Twisted torus knots \(T(p, q;kq, s)\) are cable knots. J. Knot Theory Ramif. 21(1), 1250005 (2012) Lee, S.: Twisted torus knots that are unknotted. Int. Math. Res. Not. IMRN 2014(18), 4958–4996 (2014) Lee, S.: Torus knots obtained by twisting torus knots. Algebr. Geom. Topol. 15(5), 2819–2838 (2015) Lee, S.: Knot types of twisted torus knots. J. Knot Theory Ramif. 26(12), 1750074 (2017) Lee, S.: Satellite knots obtained by twisting torus knots: hyperbolicity of twisted torus knots. Int. Math. Res. Not. IMRN 3, 785–815 (2018) Lee, S.: Composite knots obtained by twisting torus knots. Int. Math. Res. Not. IMRN 2019(18), 5744–5776 (2019) Lee, S.: Positively twisted torus knots which are torus knots. J. Knot Theory Ramif. 28(3), 1950023 (2019) Lee, S.: Twisted torus knots t(p, q, p - kq, -1) which are torus knots. J. Knot Theory Ramif. 29(09), 2050068 (2020) Lee, S., de Paiva, T.: Torus knots obtained by negatively twisting torus knots. J. Knot Theory Ramif. 31(1), 2150080 (2022) Moriah, Y., Sedgwick, E.: Heegaard splittings of twisted torus knots. Topol. Appl. 156(5), 885–896 (2009) Morimoto, K.: On tangle decompositions of twisted torus knots. J. Knot Theory Ramif. 22(9), 1350049 (2013) Morimoto, K., Yamada, Y.: A note on essential tori in the exteriors of torus knots with twists. Kobe J. Math. 26(1–2), 29–34 (2009) Rolfsen, D.: Knots and links. Publish or Perish, Inc., Berkeley, Calif., (1976). Mathematics Lecture Series, No. 7 Thurston, W.P.: Three-dimensional manifolds, Kleinian groups and hyperbolic geometry. Bull. Amer. Math. Soc. (N.S.) 6(3), 357–381 (1982) Tsau, C.M.: Incompressible surfaces in the knot manifolds of torus knots. Topology 33(1), 197–201 (1994) Vafaee, F.: On the knot Floer homology of twisted torus knots. Int. Math. Res. Not. IMRN 15, 6516–6537 (2015) Wu, Y.-Q.: Sutured manifold hierarchies, essential laminations, and Dehn surgery. J. Differ. Geom. 48(3), 407–437 (1998)