Hyperbolic trigonometry in the Einstein relativistic velocity model of hyperbolic geometry
Tài liệu tham khảo
Stillwell, 1996, Sources of Hyperbolic Geometry, 10
Stillwell, 1996, Sources of Hyperbolic Geometry, 35
Ungar, 1989, The relativistic noncommutative nonassociative group of velocities and the Thomas rotation, Resultate Math., 16, 168, 10.1007/BF03322653
Ungar, 1988, Thomas rotation and the parametrization of the Lorentz transformation group, Found. Phys. Lett., 1, 57, 10.1007/BF00661317
Ungar, 1998, From Pythagoras to Einstein: The hyperbolic Pythagorean theorem, Found. Phys., 28, 1283, 10.1023/A:1018874826277
Smith, 1996, Abstract space-times and their Lorentz groups, J. Math. Phys., 37, 3073, 10.1063/1.531555
Foguel, 2000, Involutory decomposition of groups into twisted subgroups and subgroups, J. Group Theory, 3, 27, 10.1515/jgth.2000.003
Krantz, 1990
Ungar, 1997, Thomas precession: Its underlying gyrogroup axioms and their use in hyperbolic geometry and relativistic physics, Found. Phys., 27, 881, 10.1007/BF02550347
Cannon, 1993
T. Foguel and A.A. Ungar, Gyrogroups and the decomposition of groups into twisted subgroups and subgroups, Pac. J. Math (to appear).
Ungar, 1991, Thomas precession and its associated grouplike structure, Amer. J. Phys., 59, 824, 10.1119/1.16730
Friedman, 1994, Gyrosemidirect product structure of bounded symmetric domains, Results Math., 26, 28, 10.1007/BF03322286
Krammer, 1998, K-loops, gyrogroups and symmetric spaces, Results Math., 33, 310, 10.1007/BF03322091
K. Rozga, On central extensions of gyrocommutative gyrogroups Pac. J. Math. (to appear).
Sabinin, 1998, On the notion of gyrogroup, Aequationes Math., 56, 11, 10.1007/s000100050039
Ungar, 1988, The Thomas rotation formalism underlying a nonassociative group structure for relativistic velocities, Appl. Math. Lett., 1, 403, 10.1016/0893-9659(88)90160-7
Ungar, 1989, Axiomatic approach to the nonassociative group of relativistic velocities, Found. Phys. Lett., 2, 199, 10.1007/BF00696113
Ungar, 1989, The relativistic velocity composition paradox and the Thomas rotation, Found. Phys., 19, 1385, 10.1007/BF00732759
Ungar, 1990, The expanding Minkowski space, Resultate math., 17, 342, 10.1007/BF03322469
Ungar, 1990, Group-like structure underlying the unit ball in real inner product spaces, Resultate Math., 18, 355, 10.1007/BF03323180
Ungar, 1990, Weakly associative groups, Resultate Math., 17, 149, 10.1007/BF03322638
Ungar, 1991, Quasidirect product groups and the Lorentz transformation group, Volumes I,II, 1378
Ungar, 1991, Successive Lorentz transformations of the electromagnetic field, Found. Phys., 21, 569, 10.1007/BF00733259
Ungar, 1992, The abstract Lorentz transformation group, Amer. J. Phys., 60, 815, 10.1119/1.17063
Ungar, 1992, A note on the Lorentz transformations linking initial and final four-vectors, J. Math. Phys., 33, 84, 10.1063/1.529928
Ungar, 1994, The abstract complex Lorentz transformation group with real metric. I. Special relativity formalism to deal with the holomorphic automorphism group of the unit ball in any complex Hilbert space, J. Math. Phys., 35, 1408, 10.1063/1.530597
Ungar, 1994, The abstract complex Lorentz transformation group with real metric. II. The invariance of the form |t|2 − |x|2, J. Math. Phys., 35, 1881, 10.1063/1.530576
Ungar, 1994, Erratum: “The abstract complex Lorentz transformation group with real metric. I. Special relativity formalism to deal with the holomorphic automorphism group of the unit ball in any complex Hilbert space”, J. Math. Phys., 35, 3770, 10.1063/1.530446
Ungar, 1994, The holomorphic automorphism group of the complex disk, Aequationes Math., 47, 240, 10.1007/BF01832962
Ungar, 1996, Extension of the unit disk gyrogroup into the unit ball of any real inner product space, J. Math. Anal. Appl., 202, 1040, 10.1006/jmaa.1996.0359
Ungar, 1996, Midpoints in gyrogroups, Found. Phys., 26, 1277, 10.1007/BF02058271
Ungar, 2000, Gyrovector spaces in the service of hyperbolic geometry
Ungar, 1999, The hyperbolic Pythagorean theorem in the Poincaré disc model of hyperbolic geometry, Amer. Math. Monthly, 106, 759, 10.2307/2589022
Ungar, 2000, Mobius transformations of the ball, Ahlfors' rotation and gyrogroups
Urbantke, 1990, Comment on: “The expanding Minkowski space”, Resultate Math., 17, 342
Ungar, 1991, Resultate Math., 19, 189
You, 1995, Equivalence of two gyrogroup structures on unit balls, Results Math., 28, 359, 10.1007/BF03322262
Fock, 1964
Sexl, 1982, Relativität, Gruppen, Teilchen
Eves, 1951, Hyperbolic trigonometry derived from the Poincaré model, Amer. Math. Monthly, 58, 469, 10.2307/2306925
Coxeter, 1998
von Piel, 1914, Der Lehrsatz des Pythagoras in der hyperbolischen Geometria, Arch. Math. Phys., 22, 199
Familiari-Calapso, 1966, Le théorème de Pythagore en géométie absolue, C.R. Acad. Sci. Paris Sér. A-B, 263, A668
Familiari-Calapso, 1969, Sur une classe de triangles et sur le théorème de Pythagore en géométrie hyperbolique, C.R. Acad. Sci. Paris Sér. A-B, 268, A603
Calapso, 1970, Ancora sul teorema de Pitagora in geometria assoluta, Atti Accad. Peloritana Pericolanti Cl. Sci. Fis. Mat. Natur., 50, 99
Wallace, 1998
Marder, 1957, On uniform acceleration in special and general relativity, 53, 194
Urbantke, 1990, Physical holonomy, Thomas precession, and Clifford algebra, Amer. J. Phys., 58, 747, 10.1119/1.16401
J.-L. Chen, Personal communication (1999).