Hyperbolic trigonometry in the Einstein relativistic velocity model of hyperbolic geometry

Computers & Mathematics with Applications - Tập 40 - Trang 313-332 - 2000
A.A. Ungar1
1Department of Mathematics, North Dakota State University Fargo, ND 58105, U.S.A.

Tài liệu tham khảo

Stillwell, 1996, Sources of Hyperbolic Geometry, 10 Stillwell, 1996, Sources of Hyperbolic Geometry, 35 Ungar, 1989, The relativistic noncommutative nonassociative group of velocities and the Thomas rotation, Resultate Math., 16, 168, 10.1007/BF03322653 Ungar, 1988, Thomas rotation and the parametrization of the Lorentz transformation group, Found. Phys. Lett., 1, 57, 10.1007/BF00661317 Ungar, 1998, From Pythagoras to Einstein: The hyperbolic Pythagorean theorem, Found. Phys., 28, 1283, 10.1023/A:1018874826277 Smith, 1996, Abstract space-times and their Lorentz groups, J. Math. Phys., 37, 3073, 10.1063/1.531555 Foguel, 2000, Involutory decomposition of groups into twisted subgroups and subgroups, J. Group Theory, 3, 27, 10.1515/jgth.2000.003 Krantz, 1990 Ungar, 1997, Thomas precession: Its underlying gyrogroup axioms and their use in hyperbolic geometry and relativistic physics, Found. Phys., 27, 881, 10.1007/BF02550347 Cannon, 1993 T. Foguel and A.A. Ungar, Gyrogroups and the decomposition of groups into twisted subgroups and subgroups, Pac. J. Math (to appear). Ungar, 1991, Thomas precession and its associated grouplike structure, Amer. J. Phys., 59, 824, 10.1119/1.16730 Friedman, 1994, Gyrosemidirect product structure of bounded symmetric domains, Results Math., 26, 28, 10.1007/BF03322286 Krammer, 1998, K-loops, gyrogroups and symmetric spaces, Results Math., 33, 310, 10.1007/BF03322091 K. Rozga, On central extensions of gyrocommutative gyrogroups Pac. J. Math. (to appear). Sabinin, 1998, On the notion of gyrogroup, Aequationes Math., 56, 11, 10.1007/s000100050039 Ungar, 1988, The Thomas rotation formalism underlying a nonassociative group structure for relativistic velocities, Appl. Math. Lett., 1, 403, 10.1016/0893-9659(88)90160-7 Ungar, 1989, Axiomatic approach to the nonassociative group of relativistic velocities, Found. Phys. Lett., 2, 199, 10.1007/BF00696113 Ungar, 1989, The relativistic velocity composition paradox and the Thomas rotation, Found. Phys., 19, 1385, 10.1007/BF00732759 Ungar, 1990, The expanding Minkowski space, Resultate math., 17, 342, 10.1007/BF03322469 Ungar, 1990, Group-like structure underlying the unit ball in real inner product spaces, Resultate Math., 18, 355, 10.1007/BF03323180 Ungar, 1990, Weakly associative groups, Resultate Math., 17, 149, 10.1007/BF03322638 Ungar, 1991, Quasidirect product groups and the Lorentz transformation group, Volumes I,II, 1378 Ungar, 1991, Successive Lorentz transformations of the electromagnetic field, Found. Phys., 21, 569, 10.1007/BF00733259 Ungar, 1992, The abstract Lorentz transformation group, Amer. J. Phys., 60, 815, 10.1119/1.17063 Ungar, 1992, A note on the Lorentz transformations linking initial and final four-vectors, J. Math. Phys., 33, 84, 10.1063/1.529928 Ungar, 1994, The abstract complex Lorentz transformation group with real metric. I. Special relativity formalism to deal with the holomorphic automorphism group of the unit ball in any complex Hilbert space, J. Math. Phys., 35, 1408, 10.1063/1.530597 Ungar, 1994, The abstract complex Lorentz transformation group with real metric. II. The invariance of the form |t|2 − |x|2, J. Math. Phys., 35, 1881, 10.1063/1.530576 Ungar, 1994, Erratum: “The abstract complex Lorentz transformation group with real metric. I. Special relativity formalism to deal with the holomorphic automorphism group of the unit ball in any complex Hilbert space”, J. Math. Phys., 35, 3770, 10.1063/1.530446 Ungar, 1994, The holomorphic automorphism group of the complex disk, Aequationes Math., 47, 240, 10.1007/BF01832962 Ungar, 1996, Extension of the unit disk gyrogroup into the unit ball of any real inner product space, J. Math. Anal. Appl., 202, 1040, 10.1006/jmaa.1996.0359 Ungar, 1996, Midpoints in gyrogroups, Found. Phys., 26, 1277, 10.1007/BF02058271 Ungar, 2000, Gyrovector spaces in the service of hyperbolic geometry Ungar, 1999, The hyperbolic Pythagorean theorem in the Poincaré disc model of hyperbolic geometry, Amer. Math. Monthly, 106, 759, 10.2307/2589022 Ungar, 2000, Mobius transformations of the ball, Ahlfors' rotation and gyrogroups Urbantke, 1990, Comment on: “The expanding Minkowski space”, Resultate Math., 17, 342 Ungar, 1991, Resultate Math., 19, 189 You, 1995, Equivalence of two gyrogroup structures on unit balls, Results Math., 28, 359, 10.1007/BF03322262 Fock, 1964 Sexl, 1982, Relativität, Gruppen, Teilchen Eves, 1951, Hyperbolic trigonometry derived from the Poincaré model, Amer. Math. Monthly, 58, 469, 10.2307/2306925 Coxeter, 1998 von Piel, 1914, Der Lehrsatz des Pythagoras in der hyperbolischen Geometria, Arch. Math. Phys., 22, 199 Familiari-Calapso, 1966, Le théorème de Pythagore en géométie absolue, C.R. Acad. Sci. Paris Sér. A-B, 263, A668 Familiari-Calapso, 1969, Sur une classe de triangles et sur le théorème de Pythagore en géométrie hyperbolique, C.R. Acad. Sci. Paris Sér. A-B, 268, A603 Calapso, 1970, Ancora sul teorema de Pitagora in geometria assoluta, Atti Accad. Peloritana Pericolanti Cl. Sci. Fis. Mat. Natur., 50, 99 Wallace, 1998 Marder, 1957, On uniform acceleration in special and general relativity, 53, 194 Urbantke, 1990, Physical holonomy, Thomas precession, and Clifford algebra, Amer. J. Phys., 58, 747, 10.1119/1.16401 J.-L. Chen, Personal communication (1999).