Hyperbolic manifolds with convex boundary
Tóm tắt
Let (M,∂M) be a 3-manifold, which carries a hyperbolic metric with convex boundary. We consider the hyperbolic metrics on M such that the boundary is smooth and strictly convex. We show that the induced metrics on the boundary are exactly the metrics with curvature K>-1, and that the third fundamental forms of ∂M are exactly the metrics with curvature K<1, for which the closed geodesics which are contractible in M have length L>2π. Each is obtained exactly once. Other related results describe existence and uniqueness properties for other boundary conditions, when the metric which is achieved on ∂M is a linear combination of the first, second and third fundamental forms.
Tài liệu tham khảo
Ahlfors, L.V.: Lectures on quasiconformal mappings. Toronto, Ont., New York, London: D. Van Nostrand Co., Inc. 1966. Manuscript prepared with the assistance of Clifford J. Earle, Jr. Van Nostrand Mathematical Studies, No. 10
Aleksandrov, A.D.: Vestnik Leningrad Univ. 13 (1958)
Alexandrow, A.D.: Konvexe Polyeder. Berlin: Akademie 1958
citation_journal_title=Mat. Sb.; citation_author=null Andreev; citation_volume=81; citation_publication_date=1970; citation_pages=445; citation_id=CRAnd70
citation_journal_title=Math. USSR Sb.; citation_author=null Andreev; citation_volume=12; citation_publication_date=1971; citation_pages=225; citation_id=CRAnd71
citation_journal_title=Bull. Soc. Math. Fr.; citation_author=null Bao; citation_volume=130; citation_publication_date=2002; citation_pages=457; citation_id=CRBB02
citation_journal_title=Geom. Dedicata; citation_author=null Bridgeman; citation_volume=96; citation_publication_date=2003; citation_pages=211; citation_doi=10.1023/A:1022102007948; citation_id=CRBC03
citation_journal_title=Mich. Math. J.; citation_author=null Bishop; citation_volume=43; citation_publication_date=1996; citation_pages=231; citation_doi=10.1307/mmj/1029005460; citation_id=CRBis96
citation_journal_title=http://math.usc.edu/∼fbonahon. Ann. Math.; citation_author=null Bonahon; citation_volume=160; citation_publication_date=2004; citation_pages=1013; citation_id=CRBO01
citation_journal_title=Ann. Fac. Sci. Toulouse, VI. Sér., Math.; citation_author=null Bonahon; citation_volume=5; citation_publication_date=1996; citation_pages=233; citation_id=CRBon96
citation_journal_title=Proc. Symp. Pure Math.; citation_author=null Calabi; citation_volume=3; citation_publication_date=1961; citation_pages=155; citation_id=CRCal61
citation_journal_title=J. Ec. Polytech.; citation_author=null Cauchy; citation_volume=19; citation_publication_date=1813; citation_pages=87; citation_id=CRCau13
citation_journal_title=Mich. Math. J.; citation_author=null Charney; citation_volume=42; citation_publication_date=1995; citation_pages=479; citation_doi=10.1307/mmj/1029005308; citation_id=CRCD95
citation_journal_title=Invent. Math.; citation_author=null Verdière; citation_volume=104; citation_publication_date=1991; citation_pages=655; citation_doi=10.1007/BF01245096; citation_id=CRCdV91
citation_journal_title=Am. Math. Mon.; citation_author=null Coxeter; citation_volume=50; citation_publication_date=1943; citation_pages=217; citation_doi=10.2307/2303924; citation_id=CRCox43
Epstein, D.B.A., Marden, A.: Convex hulls in hyperbolic spaces, a theorem of Sullivan, and measured pleated surfaces. In: Analytical and geometric aspects of hyperbolic space, ed. by D.B.A. Epstein. L.M.S. Lecture Note Series, vol. 111. Cambridge University Press 1986
citation_journal_title=Taškent. Gos. Univ. Naučn. Trudy Vyp.; citation_author=null Gajubov; citation_volume=276; citation_publication_date=1966; citation_pages=24; citation_id=CRGaj66
Gallot, S., Hulin, D., Lafontaine, J.: Riemannian geometry, third edition. Universitext. Berlin: Springer 2004
citation_journal_title=Invent. Math.; citation_author=null Gromov; citation_volume=82; citation_publication_date=1985; citation_pages=307; citation_doi=10.1007/BF01388806; citation_id=CRGro85
citation_journal_title=Bull. Am. Math. Soc., New Ser.; citation_author=null Hamilton; citation_volume=7; citation_publication_date=1982; citation_pages=65; citation_id=CRHam82
citation_journal_title=J. Differ. Geom.; citation_author=null Hodgson; citation_volume=48; citation_publication_date=1998; citation_pages=1; citation_id=CRHK98
Kapovich, M.: Hyperbolic manifolds and discrete groups. Prog. Math., vol. 183. Boston, MA: Birkhäuser Boston Inc. 2001
citation_journal_title=J. Differ. Geom.; citation_author=null Labourie; citation_volume=30; citation_publication_date=1989; citation_pages=395; citation_id=CRLab89
citation_journal_title=J. Differ. Geom.; citation_author=null Labourie; citation_volume=35; citation_publication_date=1992; citation_pages=609; citation_id=CRLab92a
citation_journal_title=J. Lond. Math. Soc., II. Ser.; citation_author=null Labourie; citation_volume=45; citation_publication_date=1992; citation_pages=549; citation_doi=10.1112/jlms/s2-45.3.549; citation_id=CRLab92b
citation_journal_title=Geom. Funct. Anal.; citation_author=null Labourie; citation_volume=7; citation_publication_date=1997; citation_pages=496; citation_doi=10.1007/s000390050017; citation_id=CRLab97
Lecuire, C.: Plissage des variétés hyperboliques de dimension 3. To appear in Invent. Math.
Legendre, A.-M.: Eléments de géométrie, première édition, note XII, pp. 321–334. Paris 1793 (an II)
citation_journal_title=Math. Ann.; citation_author=null Labourie; citation_volume=316; citation_publication_date=2000; citation_pages=465; citation_doi=10.1007/s002080050339; citation_id=CRLS00
Moussong, G.: Personal communication. July 2002
citation_journal_title=Commun. Pure Appl. Math; citation_author=null Nirenberg; citation_volume=6; citation_publication_date=1953; citation_pages=337; citation_id=CRNir53
Pogorelov, A.V.: Extrinsic Geometry of Convex Surfaces. Transl. Math. Monogr., vol. 35. American Mathematical Society 1973
citation_journal_title=Invent. Math.; citation_author=null Rivin; citation_volume=111; citation_publication_date=1993; citation_pages=77; citation_doi=10.1007/BF01231281; citation_id=CRRH93
Rivin, I.: Thesis. PhD thesis. Princeton University 1986
citation_journal_title=Topology; citation_author=null Rivin; citation_volume=32; citation_publication_date=1993; citation_pages=87; citation_doi=10.1016/0040-9383(93)90039-X; citation_id=CRRiv93
citation_journal_title=Ann. Math.; citation_author=null Rivin; citation_volume=139; citation_publication_date=1994; citation_pages=553; citation_doi=10.2307/2118572; citation_id=CRRiv94
citation_journal_title=Ann. Math.; citation_author=null Rivin; citation_volume=143; citation_publication_date=1996; citation_pages=51; citation_doi=10.2307/2118652; citation_id=CRRiv96
citation_journal_title=Bull. Soc. Math. Fr.; citation_author=null Rousset; citation_volume=132; citation_publication_date=2004; citation_pages=233; citation_id=CRRou04
citation_journal_title=Electron. Res. Announc. Am. Math. Soc.; citation_author=null Rivin; citation_volume=5; citation_publication_date=1999; citation_pages=18; citation_doi=10.1090/S1079-6762-99-00057-8; citation_id=CRRS99
citation_journal_title=C. R. Acad. Sci., Sér. A; citation_author=null Schlenker; citation_volume=319; citation_publication_date=1994; citation_pages=609; citation_id=CRSch94
citation_journal_title=Commun. Anal. Geom.; citation_author=null Schlenker; citation_volume=4; citation_publication_date=1996; citation_pages=285; citation_id=CRSch96
citation_journal_title=J. Differ. Geom.; citation_author=null Schlenker; citation_volume=48; citation_publication_date=1998; citation_pages=323; citation_id=CRSch98a
citation_journal_title=Ann. Inst. Fourier; citation_author=null Schlenker; citation_volume=48; citation_publication_date=1998; citation_pages=837; citation_id=CRSch98b
citation_journal_title=Discrete Comput. Geom.; citation_author=null Schlenker; citation_volume=23; citation_publication_date=2000; citation_pages=409; citation_doi=10.1007/PL00009509; citation_id=CRSch00
citation_journal_title=Asian J. Math.; citation_author=null Schlenker; citation_volume=5; citation_publication_date=2001; citation_pages=327; citation_id=CRSch01a
citation_journal_title=Comment. Math. Helv.; citation_author=null Schlenker; citation_volume=76; citation_publication_date=2001; citation_pages=1; citation_doi=10.1007/s000140050148; citation_id=CRSch01b
Schlenker, J.-M.: Hyperbolic manifolds with polyhedral boundary. math.GT/0111136, available at http://picard.ups-tlse.fr/∼schlenker, 2001
Schlenker, J.-M.: Hyperideal polyhedra in hyperbolic manifolds. Preprint math.GT/0212355, 2002
citation_journal_title=Geom. Funct. Anal.; citation_author=null Schlenker; citation_volume=12; citation_publication_date=2002; citation_pages=395; citation_doi=10.1007/s00039-002-8252-x; citation_id=CRSch02b
Schlenker, J.-M.: Hyperbolic manifolds with constant curvature boundaries. In preparation, 2005
citation_journal_title=Math. Res. Lett.; citation_author=null Schlenker; citation_volume=12; citation_publication_date=2005; citation_pages=82; citation_id=CRSch05b
citation_journal_title=Discrete Comput. Geom.; citation_author=null Schlenker; citation_volume=33; citation_publication_date=2005; citation_pages=207; citation_doi=10.1007/s00454-004-1102-x; citation_id=CRSch05c
Thurston, W.P.: Three-dimensional geometry and topology. Recent version available on http://www.msri.org/publications/books/gt3m/, 1980
Vekua, I.N.: Generalized analytic functions. London: Pergamon Press 1962
citation_journal_title=Ann. Math.; citation_author=null Weil; citation_volume=72; citation_publication_date=1960; citation_pages=369; citation_doi=10.2307/1970140; citation_id=CRWei60