Hyers-Ulam stability of fractional linear differential equations involving Caputo fractional derivatives
Tóm tắt
Từ khóa
Tài liệu tham khảo
S. András, A. R. Mészáros: Ulam-Hyers stability of dynamic equations on time scales via Picard operators. Appl. Math. Comput. 219 (2013), 4853–4864.
M. Eshaghi Gordji, Y. J. Cho, M. B. Ghaemi, B. Alizadeh: Stability of the second order partial differential equations. J. Inequal. Appl. (electronic only) 2011 (2011), Article ID 81, 10 pages.
R. W. Ibrahim: Ulam stability of boundary value problem. Kragujevac J. Math. 37 (2013), 287–297.
S.-M. Jung: Hyers-Ulam stability of linear differential equations of first order. Appl. Math. Lett. 17 (2004), 1135–1140.
S.-M. Jung: Hyers-Ulam stability of linear differential equations of first order. III. J. Math. Anal. Appl. 311 (2005), 139–146.
S.-M. Jung: Hyers-Ulam stability of linear differential equations of first order. II. Appl. Math. Lett. 19 (2006), 854–858.
A. A. Kilbas, H. M. Srivastava, J. J. Trujillo: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies 204, Elsevier, Amsterdam, 2006.
N. Lungu, D. Popa: Hyers-Ulam stability of a first order partial differential equation. J. Math. Anal. Appl. 385 (2012), 86–91.
D. Popa, I. Raşa: On the Hyers-Ulam stability of the linear differential equation. J. Math. Anal. Appl. 381 (2011), 530–537.
H. Rezaei, S.-M. Jung, T. M. Rassias: Laplace transform and Hyers-Ulam stability of linear differential equations. J. Math. Anal. Appl. 403 (2013), 244–251.
J. Wang, L. Lv, Y. Zhou: New concepts and results in stability of fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 2530–2538.
J. Wang, Y. Zhang: A class of nonlinear differential equations with fractional integrable impulses. Commun. Nonlinear Sci. Numer. Simul. 19 (2014), 3001–3010.