Hydrothermal synthesis of anatase nanoleaves and size dependence of anatase–rutile transformation upon heating
International Nano Letters - 2016
Tóm tắt
Amorphous TiO2 obtained by adding TiCl4 to an alkaline medium crystallizes slowly and upon 3 years ageing transforms to nanosized anatase containing an admixture of brookite. The hydrothermal treatment of this sample in solutions of lithium hydroxide leads to anatase nanoleaves, and the more concentrated LiOH solution, the greater the nanoleaves and the smaller their specific surface area. The thermal treatment of nanoleaves leads to the bulk rutile, and the greater the specific surface area of anatase nanoleaves, the lower the anatase–rutile transition temperature. This is in line with conclusions based on the thermodynamic stability of nanosized anatase over the bulk rutile.
Từ khóa
Tài liệu tham khảo
Chen, X., Mao, S.S.: Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891–2959 (2007)
Zhou, W., Liu, H., Boughton, R.I., Du, G., Lin, J., Wang, J., Liu, D.: One-dimensional single-crystalline Ti–O based nanostructures: properties, synthesis, modifications and applications. J. Mater. Chem. 20, 5993–6008 (2010)
Chen, X., Selloni, A.: Introduction: titanium dioxide (TiO2) nanomaterials. Chem. Rev. 114, 9281–9282 (2014)
Cargnello, M., Gordon, T.R., Murray, C.B.: Solution-phase synthesis of titanium dioxide nanoparticles and nanocrystals. Chem. Rev. 114, 9319–9345 (2014)
Wang, X., Li, Z., Shi, J., Yu, Y.: One-dimensional titanium dioxide nanomaterials: nanowires, nanorods, and nanobelts. Chem. Rev. 114, 9346–9384 (2014)
Wang, L., Sasaki, T.: Titanium oxide nanosheets: graphene analogues with versatile functionalities. Chem. Rev. 114, 9455–9486 (2014)
Bourikas, K., Kordulis, C., Lycourghiotis, A.: Titanium dioxide (anatase and rutile): surface chemistry, liquid–solid interface chemistry, and scientific synthesis of supported catalysts. Chem. Rev. 114, 9754–9823 (2014)
Ohzuku, T., Ueda, A., Yamamoto, N.: Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells. J. Electrochem. Soc. 142, 1431–1435 (1995)
Yang, Z., Choi, D., Kerisit, S., Rosso, K.M., Wang, D., Zhang, J., Graff, G., Liu, J.: Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: a review. J. Power Sources 192, 588–598 (2009)
Wu, D., Liu, J., Zhao, X., Li, A., Chen, Y., Ming, N.: Sequence of events for the formation of titanate nanotubes, nanofibers, nanowires, and nanobelts. Chem. Mater. 18, 547–553 (2006)
Ranade, M.R., Navrotsky, A., Zhang, H.Z., Banfield, J.F., Elder, S.H., Zaban, A., Borse, P.H., Kulkarni, S.K., Doran, G.S., Whitfield, H.J.: Energetics of nanocrystalline TiO2. Proc. Natl. Acad. Sci. 99, 6476–6481 (2002)
Levchenko, A.A., Li, G., Boerio-Goates, J., Woodfield, B.F., Navrotsky, A.: TiO2 stability landscape: polymorphism, surface energy, and bound water energetics. Chem. Mater. 18, 6324–6332 (2006)
Sabyrov, K., Burrows, N.D.: Lee Penn R.: size-dependent anatase to rutile phase transformation and particle growth. Chem. Mater. 25, 1408–1415 (2013)
Kirillov, S.A., Lisnycha, T.V., Chernukhin, S.I.: Precipitated nanosized titanium dioxide for electrochemical applications. J. Power Sources 196, 2221–2226 (2011)
Lesnichaya, T.V., Terikovskaya, T.E., Kosilov, V.V., Kirillov, S.A.: Synthesis, morphology and electrochemical properties of TiO2 microspheres. Chem. Phys. Tech. Surf. 6, 190–195 (2015)
Jalava, J.-P., Heikkilä, L., Hovi, O., Laiho, R., Hakanen, A., Härmä, H.: Structural investigation of hydrous TiO2 precipitates and their aging products by X-ray diffraction, atomic force microscopy, and transmission electron microscopy. Ind. Eng. Chem. Res. 37, 1317–1323 (1998)
Kirillov, S.A.: Surface area and pore volume of a system of particles as a function of their size and packing. Microporous Mesoporous Mater. 122, 234–239 (2009)