Hydrothermal processing of 3D-printed calcium phosphate scaffolds enhances bone formation in vivo: a comparison with biomimetic treatment

Acta Biomaterialia - Tập 135 - Trang 671-688 - 2021
Yago Raymond1,2,3,4, Mar Bonany1,2,3, Cyril Lehmann1,2, Emilie Thorel4, Raúl Benítez3,5, Jordi Franch6, Montserrat Espanol1,2,3, Xavi Solé-Martí1,2,3, Maria-Cristina Manzanares7, Cristina Canal1,2,3, Maria-Pau Ginebra1,2,3,8
1Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), EEBE, Av. Eduard Maristany, 16, 08019 Barcelona, Spain
2Barcelona Research Centre for Multiscale Science and Engineering, UPC, EEBE, Av. Eduard Maristany, 10-14, 08019 Barcelona, Spain
3Biomedical Engineering Research Center (CREB), UPC, Av. Diagonal, 647, 08028 Barcelona, Spain
4Mimetis Biomaterials S.L., Carrer de Cartagena, 245, 3E, 08025 Barcelona, Spain
5Institut de Recerca Sant Joan de Déu (IRSJD), 39-57, 08950 Esplugues del Llobregat (Barcelona), Spain
6Bone Healing Group, Small Animal Surgery Department, Veterinary School, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
7Human Anatomy and Embryology Unit, Department of Pathology and Experimental Therapeutics, Universitat de Barcelona, 08907 L'Hospitalet de Llobregat (Barcelona), Spain
8Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, Carrer Baldiri Reixac 10- 12, 08028 Barcelona, Spain

Tài liệu tham khảo

C.L. Ventola, Medical applications for 3D printing: current and projected uses., P T. 39 (2014) 704–11. http://www.ncbi.nlm.nih.gov/pubmed/25336867. Hidalgo, 1989, Fibula free flap: a new method of mandible reconstruction, Plast. Reconstr. Surg., 84, 71, 10.1097/00006534-198907000-00014 Sen, 2007, Autologous iliac crest bone graft: Should it still be the gold standard for treating nonunions?, Injury, 38, S75, 10.1016/j.injury.2007.02.012 Felice, 2009, Vertical ridge augmentation of the atrophic posterior mandible with interpositional bloc grafts: bone from the iliac crest vs. bovine anorganic bone. Clinical and histological results up to one year after loading from a randomized-controlled clinical tria, Clin. Oral Implants Res., 20, 1386, 10.1111/j.1600-0501.2009.01765.x Parthasarathy, 2014, 3D modeling, custom implants and its future perspectives in craniofacial surgery, Ann. Maxillofac. Surg., 4, 9, 10.4103/2231-0746.133065 Mobbs, 2017, The utility of 3D printing for surgical planning and patient-specific implant design for complex spinal pathologies: case report, J. Neurosurg. Spine, 26, 513, 10.3171/2016.9.SPINE16371 Saijo, 2009, Maxillofacial reconstruction using custom-made artificial bones fabricated by inkjet printing technology, J. Artif. Organs., 12, 200, 10.1007/s10047-009-0462-7 Cesarano, 2005, Customization of load-bearing hydroxyapatite lattice scaffolds, Int. J. Appl. Ceram. Technol., 2, 212, 10.1111/j.1744-7402.2005.02026.x Tack, 2016, 3D-printing techniques in a medical setting: a systematic literature review, Biomed. Eng. Online, 15, 115, 10.1186/s12938-016-0236-4 Martelli, 2016, Advantages and disadvantages of 3-dimensional printing in surgery: a systematic review, Surgery, 159, 1485, 10.1016/j.surg.2015.12.017 J.C. Banwart, M.A. Asher, R.S. Hassanein, Iliac crest bone graft harvest donor site morbidity, Spine (Phila. Pa. 1976). 20 (1995) 1055–1060. doi:10.1097/00007632-199505000-00012. Anthony, 1995, Donor leg morbidity and function after fibula free flap mandible reconstruction, Plast. Reconstr. Surg., 96, 146, 10.1097/00006534-199507000-00022 Lewis, 2004, Direct writing in three dimensions, Mater. Today, 7, 32, 10.1016/S1369-7021(04)00344-X Miranda, 2006, Sintering and robocasting of β-tricalcium phosphate scaffolds for orthopaedic applications, Acta Biomater., 2, 457, 10.1016/j.actbio.2006.02.004 Franco, 2010, Direct write assembly of calcium phosphate scaffolds using a water-based hydrogel, Acta Biomater., 6, 218, 10.1016/j.actbio.2009.06.031 Marques, 2017, Biphasic calcium phosphate scaffolds fabricated by direct write assembly: mechanical, anti-microbial and osteoblastic properties, J. Eur. Ceram. Soc., 37, 359, 10.1016/j.jeurceramsoc.2016.08.018 Vallet-Regí, 2004, Calcium phosphates as substitution of bone tissues, Prog. Solid State Chem., 32, 1, 10.1016/j.progsolidstchem.2004.07.001 Lode, 2014, Fabrication of porous scaffolds by three-dimensional plotting of a pasty calcium phosphate bone cement under mild conditions, J. Tissue Eng. Regen. Med., 8, 682, 10.1002/term.1563 Maazouz, 2014, Robocasting of biomimetic hydroxyapatite scaffolds using self-setting inks, J. Mater. Chem. B, 2, 5378, 10.1039/C4TB00438H Sadowska, 2017, Biomimetic versus sintered calcium phosphates: the in vitro behavior of osteoblasts and mesenchymal stem cells, Tissue Eng. Part A, 23, 10.1089/ten.tea.2016.0406 Ginebra, 1997, Setting reaction and hardening of an apatitic calcium phosphate cement, J. Dent. Res., 76, 905, 10.1177/00220345970760041201 Ginebra, 2018, Bioceramics and bone healing, EFORT Open Rev., 3, 173, 10.1302/2058-5241.3.170056 Carrel, 2016, Large bone vertical augmentation using a three-dimensional printed TCP/HA bone graft: a pilot study in dog mandible, Clin. Implant Dent. Relat. Res., 18, 1183, 10.1111/cid.12394 Carrel, 2016, A 3D printed TCP/HA structure as a new osteoconductive scaffold for vertical bone augmentation, Clin. Oral Implants Res., 27, 55, 10.1111/clr.12503 Diloksumpan, 2020, Orthotopic bone regeneration within 3D printed bioceramic scaffolds with region-dependent porosity gradients in an equine model, Adv. Healthc. Mater., 1901807, 1 Vidal, 2020, Regeneration of segmental defects in metatarsus of sheep with vascularized and customized 3D-printed calcium phosphate scaffolds, Sci. Rep., 10, 7068, 10.1038/s41598-020-63742-w Barba, 2018, Osteogenesis by foamed and 3D-printed nanostructured calcium phosphate scaffolds: effect of pore architecture, Acta Biomater., 79, 135, 10.1016/j.actbio.2018.09.003 Ahlfeld, 2021, Toward biofabrication of resorbable implants consisting of a calcium phosphate cement and fibrin—a characterization in vitro and in vivo, Int. J. Mol. Sci., 22, 1218, 10.3390/ijms22031218 Akkineni, 2015, 3D plotting of growth factor loaded calcium phosphate cement scaffolds, Acta Biomater., 10.1016/j.actbio.2015.08.036 Ahlfeld, 2017, Design and Fabrication of complex scaffolds for bone defect healing: combined 3D plotting of a calcium phosphate cement and a growth factor-loaded hydrogel, Ann. Biomed. Eng., 45, 224, 10.1007/s10439-016-1685-4 Galea, 2015, Textured and hierarchically structured calcium phosphate ceramic blocks through hydrothermal treatment, Biomaterials, 67, 93, 10.1016/j.biomaterials.2015.07.026 Murakami, 2012, Hydrothermal synthesis of porous hydroxyapatite ceramics composed of rod-shaped particles and evaluation of their fracture behavior, Ceram. Int., 38, 1649, 10.1016/j.ceramint.2011.09.056 Raymond, 2018, Accelerated hardening of nanotextured 3D-plotted self-setting calcium phosphate inks, Acta Biomater., 75, 451, 10.1016/j.actbio.2018.05.042 Barba, 2017, Osteoinduction by foamed and 3D-Printed calcium phosphate scaffolds: effect of nanostructure and pore architecture, ACS Appl. Mater. Interfaces, 9, 41722, 10.1021/acsami.7b14175 Barba, 2019, Impact of biomimicry in the design of osteoinductive bone substitutes: nanoscale matters, ACS Appl. Mater. Interfaces, 11, 8818, 10.1021/acsami.8b20749 Davison, 2014, Submicron-scale surface architecture of tricalcium phosphate directs osteogenesis in vitro and in vivo, Eur. Cells Mater., 27, 281, 10.22203/eCM.v027a20 Duan, 2016, Submicron-surface structured tricalcium phosphate ceramic enhances the bone regeneration in canine spine environment, J. Orthop. Res., 34, 1865, 10.1002/jor.23201 Raymond, 2021, 3D printing non-cylindrical strands: morphological and structural implications, Addit. Manuf., 46 Westphal, 2009, Rietveld quantification of amorphous portions with an internal standard—Mathematical consequences of the experimental approach, Powder Diffr., 24, 239, 10.1154/1.3187828 PANalytical B.V., X'Pert HighScore Plus Help System Version 3.0. Operations Manual, 2009. Caglioti, 1958, Choice of collimators for a crystal spectrometer for neutron diffraction, Nucl. Instrum., 3, 223, 10.1016/0369-643X(58)90029-X Rueden, 2017, ImageJ2: ImageJ for the next generation of scientific image data, BMC Bioinf., 18, 529, 10.1186/s12859-017-1934-z Fedorov, 2012, 3D slicer as an image computing platform for the quantitative imaging network, Magn. Reson. Imag., 30, 1323, 10.1016/j.mri.2012.05.001 International Organization for Standardization, 14704:2016 Fine ceramics (advanced ceramics, advanced technical ceramics) — Test method for flexural strength of monolithic ceramics at room temperature, 2016. Gustavsson, 2011, Ion reactivity of calcium-deficient hydroxyapatite in standard cell culture media, Acta Biomater, 7, 4242, 10.1016/j.actbio.2011.07.016 Sadowska, 2018, In vitro response of mesenchymal stem cells to biomimetic hydroxyapatite substrates: a new strategy to assess the effect of ion exchange, Acta Biomater., 76, 319, 10.1016/j.actbio.2018.06.025 2011 Bishop, 2005 Gonzalez, 2018 Koutsopoulos, 2002, Synthesis and characterization of hydroxyapatite crystals: A review study on the analytical methods, J. Biomed. Mater. Res., 62, 600, 10.1002/jbm.10280 Markovic, 2004, Preparation and comprehensive characterization of a calcium hydroxyapatite reference material, J. Res. Natl. Inst. Stand. Technol., 109, 553, 10.6028/jres.109.042 Rodríguez-Lorenzo, 2000, Controlled crystallization of calcium phosphate apatites, Chem. Mater., 12, 2460, 10.1021/cm001033g Wei, 2007, Hydrolysis of α-tricalcium phosphate in simulated body fluid and dehydration behavior during the drying process, J. Am. Ceram. Soc., 90, 2315, 10.1111/j.1551-2916.2007.01682.x Rey, 2009, Bone mineral: update on chemical composition and structure, Osteoporos. Int., 20, 1013, 10.1007/s00198-009-0860-y Drouet, 2013, Apatite formation: why it may not work as planned, and how to conclusively identify apatite compounds, Biomed Res. Int., 2013, 1, 10.1155/2013/490946 Espanol, 2010, Investigation of the hydroxyapatite obtained as hydrolysis product of α-tricalcium phosphate by transmission electron microscopy, CrystEngComm, 12, 3318, 10.1039/c001754j Yoshimura, 1994, Hydrothermal synthesis of biocompatible whiskers, J. Mater. Sci., 29, 3399, 10.1007/BF00352039 Ioku, 1998, Hydrothermal Preparation of Porous Hydroxyapatite Ceramics, Rev. HIGH Press. Sci. Technol., 7, 1398, 10.4131/jshpreview.7.1398 Ioku, 2006, Hydrothermal preparation of tailored hydroxyapatite, J. Mater. Sci., 41, 1341, 10.1007/s10853-006-7338-5 Ginebra, 2004, Effect of the particle size on the micro and nanostructural features of a calcium phosphate cement: a kinetic analysis, Biomaterials, 25, 3453, 10.1016/j.biomaterials.2003.10.049 Pastorino, 2015, Multiple characterization study on porosity and pore structure of calcium phosphate cements, Acta Biomater., 28, 205, 10.1016/j.actbio.2015.09.017 Espanol, 2009, Intrinsic porosity of calcium phosphate cements and its significance for drug delivery and tissue engineering applications, Acta Biomater., 5, 2752, 10.1016/j.actbio.2009.03.011 Escobar-Chávez, 2006, Applications of thermo-reversible pluronic F-127 gels in pharmaceutical formulations, J. Pharm. Pharm. Sci., 9, 339 Abdeljawad, 2019, Sintering processes in direct ink write additive manufacturing: a mesoscopic modeling approach, Acta Mater., 169, 60, 10.1016/j.actamat.2019.01.011 Nommeots-nomm, 2018, Journal of the european ceramic society direct ink writing of highly bioactive glasses, J. Eur. Ceram. Soc., 38, 837, 10.1016/j.jeurceramsoc.2017.08.006 Fernández, 1995, Dimensional and thermal behaviour of calcium phosphate cements during setting compared to PMMA bone cements, J. Mater. Sci. Lett., 14, 4, 10.1007/BF02565267 Raja, 2021, Low-temperature fabrication of calcium deficient hydroxyapatite bone scaffold by optimization of 3D printing conditions, Ceram. Int., 47, 7005, 10.1016/j.ceramint.2020.11.051 Montufar, 2020, Factors governing the dimensional accuracy and fracture modes under compression of regular and shifted orthogonal scaffolds, J. Eur. Ceram. Soc., 40, 4923, 10.1016/j.jeurceramsoc.2020.03.045 Cesarano, 1998, A review of robocasting technology, MRS Proc., 542, 133, 10.1557/PROC-542-133 Eqtesadi, 2018, Fabricating geometrically-complex B4C ceramic components by robocasting and pressureless spark plasma sintering (DOI MALAMENT REVISAR), Scr. Mater., 145, 14, 10.1016/j.scriptamat.2017.10.001 Houmard, 2013, On the structural, mechanical, and biodegradation properties of HA/β-TCP robocast scaffolds, J. Biomed. Mater. Res. Part B Appl. Biomater., 101, 1233, 10.1002/jbm.b.32935 Á.D.E. Pablos, M. Belmonte, M.I. Osendi, P. Miranzo, Cerámica y Vidrio microstructural designs of spark-plasma sintered silicon carbide ceramic scaffolds, 53 (2014) 93–100. doi:10.3989/cyv.132014. Feilden, 2017 Sadowska, 2018, Effect of nano-structural properties of biomimetic hydroxyapatite on osteoimmunomodulation, Biomaterials, 181, 318, 10.1016/j.biomaterials.2018.07.058 Habibovic, 2005, 3D microenvironment as essential element for osteoinduction by biomaterials, Biomaterials, 26, 3565, 10.1016/j.biomaterials.2004.09.056 Ciapetti, 2017, Osteoclast differentiation from human blood precursors on biomimetic calcium-phosphate substrates, Acta Biomater, 50, 102, 10.1016/j.actbio.2016.12.013 GUO, 2009, Biocompatibility and osteogenicity of degradable Ca-deficient hydroxyapatite scaffolds from calcium phosphate cement for bone tissue engineering, Acta Biomater, 5, 268, 10.1016/j.actbio.2008.07.018 Ambrosio, 2012, Injectable calcium-phosphate-based composites for skeletal bone treatments, Biomed. Mater., 7, 10.1088/1748-6041/7/2/024113 Diez-Escudero, 2017, In vitro degradation of calcium phosphates: Effect of multiscale porosity, textural properties and composition, Acta Biomater., 60, 81, 10.1016/j.actbio.2017.07.033 Gallinetti, 2014, Development and characterization of biphasic hydroxyapatite/β- <scp>TCP</scp>Cements, J. Am. Ceram. Soc., 97, 1065, 10.1111/jace.12861 Duan, 2019, Accelerated bone formation by biphasic calcium phosphate with a novel sub-micron surface topography, Eur. Cells Mater., 37, 60, 10.22203/eCM.v037a05 Davison, 2015, Influence of surface microstructure and chemistry on osteoinduction and osteoclastogenesis by biphasic calcium phosphate discs, Eur. Cells Mater., 29, 314, 10.22203/eCM.v029a24 Roohani-Esfahani, 2010, The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite–PCL composites, Biomaterials, 31, 5498, 10.1016/j.biomaterials.2010.03.058 Rustom, 2016, Micropore-induced capillarity enhances bone distribution in vivo in biphasic calcium phosphate scaffolds, Acta Biomater., 44, 144, 10.1016/j.actbio.2016.08.025 Lan Levengood, 2010, Multiscale osteointegration as a new paradigm for the design of calcium phosphate scaffolds for bone regeneration, Biomaterials, 31, 3552, 10.1016/j.biomaterials.2010.01.052 Benesch, 2008, Proteins and their peptide motifs in acellular apatite mineralization of scaffolds for tissue engineering, Tissue Eng. Part B Rev., 14, 433, 10.1089/ten.teb.2008.0121