Hydrothermal liquefaction of protein-containing biomass: study of model compounds for Maillard reactions

Yujie Fan1, Ursel Hornung1, Nicolaus Dahmen1, Andrea Kruse2
1Karlsruhe Institute of Technology, Institute of Catalysis Research and Technology (IKFT), Karlsruhe, Germany
2Conversion Technologies of Biobased Resources, Institute of Agricultural Engineering, University of Hohenheim, Stuttgart, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Kruse A, Dahmen N (2015) Water—a magic solvent for biomass conversion. J Supercrit Fluids 96:36–45. https://doi.org/10.1016/j.supflu.2014.09.038

Dimitriadis A, Bezergianni S (2017) Hydrothermal liquefaction of various biomass and waste feedstocks for biocrude production: a state of the art review. Renew Sust Energ Rev 68(Part 1):113–125. https://doi.org/10.1016/j.rser.2016.09.120

Steinbach D, Kruse A, Sauer J (2017) Pretreatment technologies of lignocellulosic biomass in water in view of furfural and 5-hydroxymethylfurfural production- a review. Biomass Conversion Biorefinery 7(2):247–274. https://doi.org/10.1007/s13399-017-0243-0

Kruse A, Dahmen N (2018) Hydrothermal biomass conversion: quo vadis? J Supercrit Fluids 134:114–123. https://doi.org/10.1016/j.supflu.2017.12.035

Schuler J, Hornung U, Kruse A, Dahmen N, Sauer J (2017) Hydrothermal liquefaction of lignin. J Biomater Nanobiotechnol 08(01):96–108. https://doi.org/10.4236/jbnb.2017.81007

Breunig M, Gebhart P, Hornung U, Kruse A, Dinjus E (2018) Direct liquefaction of lignin and lignin rich biomasses by heterogenic catalytic hydrogenolysis. Biomass Bioenergy 111:352–360. https://doi.org/10.1016/j.biombioe.2017.06.001

López Barreiro D, Beck M, Hornung U, Ronsse F, Kruse A, Prins W (2015) Suitability of hydrothermal liquefaction as a conversion route to produce biofuels from macroalgae. Algal Res 11:234–241. https://doi.org/10.1016/j.algal.2015.06.023

Ross AB, Biller P, Kubacki ML, Li H, Lea-Langton A, Jones JM (2010) Hydrothermal processing of microalgae using alkali and organic acids. Fuel 89(9):2234–2243. https://doi.org/10.1016/j.fuel.2010.01.025

López Barreiro D, Gómez BR, Ronsse F, Hornung U, Kruse A, Prins W (2016) Heterogeneous catalytic upgrading of biocrude oil produced by hydrothermal liquefaction of microalgae: state of the art and own experiments. Fuel Process Technol 148:117–127. https://doi.org/10.1016/j.fuproc.2016.02.034

Manara P, Zabaniotou A (2012) Towards sewage sludge based biofuels via thermochemical conversion – a review. Renew Sust Energ Rev 16(5):2566–2582. https://doi.org/10.1016/j.rser.2012.01.074

Gong M, Zhu W, Xu ZR, Zhang HW, Yang HP (2014) Influence of sludge properties on the direct gasification of dewatered sewage sludge in supercritical water. Renew Energy 66:605–611. https://doi.org/10.1016/j.renene.2014.01.006

Fan YJ, Zhu W, Gong M, Su Y, Zhang HW, Zeng JN (2016) Catalytic gasification of dewatered sewage sludge in supercritical water: influences of formic acid on hydrogen production. Int J Hydrog Energy 41(7):4366–4373. https://doi.org/10.1016/j.ijhydene.2015.11.071

Pavlovič I, Knez Ž, Škerget M (2013) Hydrothermal reactions of agricultural and food processing wastes in sub- and supercritical water: a review of fundamentals, mechanisms, and state of research. J Agric Food Chem 61(34):8003–8025. https://doi.org/10.1021/jf401008a

Elliott DC, Biller P, Ross AB, Schmidt AJ, Jones SB (2015) Hydrothermal liquefaction of biomass: developments from batch to continuous process. Bioresour Technol 178:147–156. https://doi.org/10.1016/j.biortech.2014.09.132

Amrullah A, Matsumura Y (2017) Supercritical water gasification of sewage sludge in continuous reactor. Bioresour Technol 249:276–283. https://doi.org/10.1016/j.biortech.2017.10.002

Shanmugam SR, Adhikari S, Shakya R (2017) Nutrient removal and energy production from aqueous phase of bio-oil generated via hydrothermal liquefaction of algae. Bioresour Technol 230:43–48. https://doi.org/10.1016/j.biortech.2017.01.031

Edmundson S, Huesemann M, Kruk R, Lemmon T, Billing J, Schmidt A, Anderson D (2017) Phosphorus and nitrogen recycle following algal bio-crude production via continuous hydrothermal liquefaction. Algal Res 26:415–421. https://doi.org/10.1016/j.algal.2017.07.016

Saber M, Nakhshiniev B, Yoshikawa K (2016) A review of production and upgrading of algal bio-oil. Renew Sust Energ Rev 58:918–930. https://doi.org/10.1016/j.rser.2015.12.342

Tang X, Zhang C, Li Z, Yang X (2016) Element and chemical compounds transfer in bio-crude from hydrothermal liquefaction of microalgae. Bioresour Technol 202:8–14. https://doi.org/10.1016/j.biortech.2015.11.076

Jazrawi C, Biller P, He Y, Montoya A, Ross AB, Maschmeyer T, Haynes BS (2015) Two-stage hydrothermal liquefaction of a high-protein microalga. Algal Res 8:15–22. https://doi.org/10.1016/j.algal.2014.12.010

Huang Y, Chen Y, Xie J, Liu H, Yin X, Wu C (2016) Bio-oil production from hydrothermal liquefaction of high-protein high-ash microalgae including wild Cyanobacteria sp. and cultivated Bacillariophyta sp. Fuel 183:9–19. https://doi.org/10.1016/j.fuel.2016.06.013

Wang K, Brown RC (2013) Catalytic pyrolysis of microalgae for production of aromatics and ammonia. Green Chem 15(3):675. https://doi.org/10.1039/c3gc00031a

Dote Y, Hayashi T, Suzuki A, Ogi T (1992) Analysis of oil derived from liquefaction of sewage-sludge. Fuel 71(9):1071–1073. https://doi.org/10.1016/0016-2361(92)90116-6

Inoue S, Sawayama S, Dote Y, Ogi T (1997) Behaviour of nitrogen during liquefaction of dewatered sewage sludge. Biomass Bioenergy 12(6):473–475. https://doi.org/10.1016/S0961-9534(97)00017-2

Dote Y, Inoue S, Ogi T, S-y Y (1996) Studies on the direct liquefaction of protein-contained biomass: the distribution of nitrogen in the products. Biomass Bioenergy 11(6):491–498. https://doi.org/10.1016/S0961-9534(96)00045-1

Dote Y, Inoue S, Ogi T, Yokoyama S-Y (1998) Distribution of nitrogen to oil products from liquefaction of amino acids. Bioresour Technol 64(2):157–160. https://doi.org/10.1016/S0960-8524(97)00079-5

Kruse A, Krupka A, Schwarzkopf V, Gamard C, Henningsen T (2005) Influence of proteins on the hydrothermal gasification and liquefaction of biomass. 1. Comparison of different feedstocks. Ind Eng Chem Res 44(9):3013–3020. https://doi.org/10.1021/ie049129y

Kruse A, Maniam P, Spieler F (2007) Influence of proteins on the hydrothermal gasification and liquefaction of biomass. 2. Model compounds. Ind Eng Chem Res 46(1):87–96. https://doi.org/10.1021/ie061047h

Biller P, Johannsen I, dos Passos JS, Ottosen LDM (2018) Primary sewage sludge filtration using biomass filter aids and subsequent hydrothermal co-liquefaction. Water Res 130:58–68. https://doi.org/10.1016/j.watres.2017.11.048

Brilman DWF, Drabik N, Wądrzyk M (2017) Hydrothermal co-liquefaction of microalgae, wood, and sugar beet pulp. Biomass Conversion Biorefinery 7(4):445–454. https://doi.org/10.1007/s13399-017-0241-2

Zhang C, Tang X, Sheng L, Yang X (2016) Enhancing the performance of Co-hydrothermal liquefaction for mixed algae strains by the Maillard reaction. Green Chem 18(8):2542–2553. https://doi.org/10.1039/c5gc02953h

Ashoor SH, Zent JB (1984) Maillard browning of common amino acids and sugars. J Food Sci 49(4):1206–1207. https://doi.org/10.1111/j.1365-2621.1984.tb10432.x

Leiva GE, Naranjo GB, Malec LS (2017) A study of different indicators of Maillard reaction with whey proteins and different carbohydrates under adverse storage conditions. Food Chem 215:410–416. https://doi.org/10.1016/j.foodchem.2016.08.003

Inoue S, Noguchi M, Hanaoka T, Minowa T (2004) Organic compounds formed by thermochemical degradation of glucose-glycine melanoidins using hot compressed water. J Chem Eng Jpn 37(7):915–919. https://doi.org/10.1252/jcej.37.915

Peterson AA, Lachance RP, Tester JW (2010) Kinetic evidence of the Maillard reaction in hydrothermal biomass processing: glucose−glycine interactions in high-temperature, high-pressure water. Ind Eng Chem Res 49(5):2107–2117. https://doi.org/10.1021/ie9014809

Teri G, Luo L, Savage PE (2014) Hydrothermal treatment of protein, polysaccharide, and lipids alone and in mixtures. Energy Fuel 28(12):7501–7509. https://doi.org/10.1021/ef501760d

Posmanik R, Cantero DA, Malkani A, Sills DL, Tester JW (2017) Biomass conversion to bio-oil using sub-critical water: study of model compounds for food processing waste. J Supercrit Fluids 119:26–35. https://doi.org/10.1016/j.supflu.2016.09.004

Titirici M-M, Antonietti M, Baccile N (2008) Hydrothermal carbon from biomass: a comparison of the local structure from poly- to monosaccharides and pentoses/hexoses. Green Chem 10(11):1204–1212. https://doi.org/10.1039/B807009A

Minowa T, Inoue S, Hanaoka T, Matsumura Y (2004) Hydrothermal reaction of glucose and glycine as model compounds of biomass. J Jpn Inst Energy 83(10):794–798. https://doi.org/10.3775/jie.83.794

Déniel M, Haarlemmer G, Roubaud A, Weiss-Hortala E, Fages J (2016) Energy valorisation of food processing residues and model compounds by hydrothermal liquefaction. Renew Sust Energ Rev 54(Supplement C):1632–1652. https://doi.org/10.1016/j.rser.2015.10.017

Yaylayan VA (2003) Recent advances in the chemistry of Strecker degradation and Amadori rearrangement: implications to aroma and color formation. Food Sci Technol Res 9(1):1–6. https://doi.org/10.3136/fstr.9.1

Van Lancker F, Adams A, De Kimpe N (2010) Formation of pyrazines in Maillard model systems of lysine-containing dipeptides. J Agric Food Chem 58(4):2470–2478. https://doi.org/10.1021/jf903898t

Remón J, Laseca M, García L, Arauzo J (2016) Hydrogen production from cheese whey by catalytic steam reforming: preliminary study using lactose as a model compound. Energy Convers Manag 114:122–141. https://doi.org/10.1016/j.enconman.2016.02.009

Sınaǧ A, Kruse A, Schwarzkopf V (2003) Key compounds of the hydropyrolysis of glucose in supercritical water in the presence of K2CO3. Ind Eng Chem Res 42(15):3516–3521. https://doi.org/10.1021/ie030079r

Sınaǧ A, Kruse A, Rathert J (2004) Influence of the heating rate and the type of catalyst on the formation of key intermediates and on the generation of gases during hydropyrolysis of glucose in supercritical water in a batch reactor. Ind Eng Chem Res 43(2):502–508. https://doi.org/10.1021/ie030475+

Ren D, Song Z, Li L, Liu Y, Jin F, Huo Z (2016) Production of 2,5-hexanedione and 3-methyl-2-cyclopenten-1-one from 5-hydroxymethylfurfural. Green Chem 18(10):3075–3081. https://doi.org/10.1039/c5gc02493e

Sheehan JD, Savage PE (2017) Molecular and lumped products from hydrothermal liquefaction of bovine serum albumin. ACS Sustain Chem Eng 5(11):10967–10975. https://doi.org/10.1021/acssuschemeng.7b02854

Hwang H-I, Hartman TG, Rosen RT, Lech J, Ho C-T (1994) Formation of pyrazines from the Maillard reaction of glucose and lysine-.alpha.-amine-15N. J Agric Food Chem 42(4):1000–1004. https://doi.org/10.1021/jf00040a031

Koehler PE, Odell GV (1970) Factors affecting the formation of pyrazine compounds in sugar-amine reactions. J Agric Food Chem 18(5):895–898. https://doi.org/10.1021/jf60171a041