Hydrothermal liquefaction of protein-containing biomass: study of model compounds for Maillard reactions
Tóm tắt
Từ khóa
Tài liệu tham khảo
Kruse A, Dahmen N (2015) Water—a magic solvent for biomass conversion. J Supercrit Fluids 96:36–45. https://doi.org/10.1016/j.supflu.2014.09.038
Dimitriadis A, Bezergianni S (2017) Hydrothermal liquefaction of various biomass and waste feedstocks for biocrude production: a state of the art review. Renew Sust Energ Rev 68(Part 1):113–125. https://doi.org/10.1016/j.rser.2016.09.120
Steinbach D, Kruse A, Sauer J (2017) Pretreatment technologies of lignocellulosic biomass in water in view of furfural and 5-hydroxymethylfurfural production- a review. Biomass Conversion Biorefinery 7(2):247–274. https://doi.org/10.1007/s13399-017-0243-0
Kruse A, Dahmen N (2018) Hydrothermal biomass conversion: quo vadis? J Supercrit Fluids 134:114–123. https://doi.org/10.1016/j.supflu.2017.12.035
Schuler J, Hornung U, Kruse A, Dahmen N, Sauer J (2017) Hydrothermal liquefaction of lignin. J Biomater Nanobiotechnol 08(01):96–108. https://doi.org/10.4236/jbnb.2017.81007
Breunig M, Gebhart P, Hornung U, Kruse A, Dinjus E (2018) Direct liquefaction of lignin and lignin rich biomasses by heterogenic catalytic hydrogenolysis. Biomass Bioenergy 111:352–360. https://doi.org/10.1016/j.biombioe.2017.06.001
López Barreiro D, Beck M, Hornung U, Ronsse F, Kruse A, Prins W (2015) Suitability of hydrothermal liquefaction as a conversion route to produce biofuels from macroalgae. Algal Res 11:234–241. https://doi.org/10.1016/j.algal.2015.06.023
Ross AB, Biller P, Kubacki ML, Li H, Lea-Langton A, Jones JM (2010) Hydrothermal processing of microalgae using alkali and organic acids. Fuel 89(9):2234–2243. https://doi.org/10.1016/j.fuel.2010.01.025
López Barreiro D, Gómez BR, Ronsse F, Hornung U, Kruse A, Prins W (2016) Heterogeneous catalytic upgrading of biocrude oil produced by hydrothermal liquefaction of microalgae: state of the art and own experiments. Fuel Process Technol 148:117–127. https://doi.org/10.1016/j.fuproc.2016.02.034
Manara P, Zabaniotou A (2012) Towards sewage sludge based biofuels via thermochemical conversion – a review. Renew Sust Energ Rev 16(5):2566–2582. https://doi.org/10.1016/j.rser.2012.01.074
Gong M, Zhu W, Xu ZR, Zhang HW, Yang HP (2014) Influence of sludge properties on the direct gasification of dewatered sewage sludge in supercritical water. Renew Energy 66:605–611. https://doi.org/10.1016/j.renene.2014.01.006
Fan YJ, Zhu W, Gong M, Su Y, Zhang HW, Zeng JN (2016) Catalytic gasification of dewatered sewage sludge in supercritical water: influences of formic acid on hydrogen production. Int J Hydrog Energy 41(7):4366–4373. https://doi.org/10.1016/j.ijhydene.2015.11.071
Pavlovič I, Knez Ž, Škerget M (2013) Hydrothermal reactions of agricultural and food processing wastes in sub- and supercritical water: a review of fundamentals, mechanisms, and state of research. J Agric Food Chem 61(34):8003–8025. https://doi.org/10.1021/jf401008a
Elliott DC, Biller P, Ross AB, Schmidt AJ, Jones SB (2015) Hydrothermal liquefaction of biomass: developments from batch to continuous process. Bioresour Technol 178:147–156. https://doi.org/10.1016/j.biortech.2014.09.132
Amrullah A, Matsumura Y (2017) Supercritical water gasification of sewage sludge in continuous reactor. Bioresour Technol 249:276–283. https://doi.org/10.1016/j.biortech.2017.10.002
Shanmugam SR, Adhikari S, Shakya R (2017) Nutrient removal and energy production from aqueous phase of bio-oil generated via hydrothermal liquefaction of algae. Bioresour Technol 230:43–48. https://doi.org/10.1016/j.biortech.2017.01.031
Edmundson S, Huesemann M, Kruk R, Lemmon T, Billing J, Schmidt A, Anderson D (2017) Phosphorus and nitrogen recycle following algal bio-crude production via continuous hydrothermal liquefaction. Algal Res 26:415–421. https://doi.org/10.1016/j.algal.2017.07.016
Saber M, Nakhshiniev B, Yoshikawa K (2016) A review of production and upgrading of algal bio-oil. Renew Sust Energ Rev 58:918–930. https://doi.org/10.1016/j.rser.2015.12.342
Tang X, Zhang C, Li Z, Yang X (2016) Element and chemical compounds transfer in bio-crude from hydrothermal liquefaction of microalgae. Bioresour Technol 202:8–14. https://doi.org/10.1016/j.biortech.2015.11.076
Jazrawi C, Biller P, He Y, Montoya A, Ross AB, Maschmeyer T, Haynes BS (2015) Two-stage hydrothermal liquefaction of a high-protein microalga. Algal Res 8:15–22. https://doi.org/10.1016/j.algal.2014.12.010
Huang Y, Chen Y, Xie J, Liu H, Yin X, Wu C (2016) Bio-oil production from hydrothermal liquefaction of high-protein high-ash microalgae including wild Cyanobacteria sp. and cultivated Bacillariophyta sp. Fuel 183:9–19. https://doi.org/10.1016/j.fuel.2016.06.013
Wang K, Brown RC (2013) Catalytic pyrolysis of microalgae for production of aromatics and ammonia. Green Chem 15(3):675. https://doi.org/10.1039/c3gc00031a
Dote Y, Hayashi T, Suzuki A, Ogi T (1992) Analysis of oil derived from liquefaction of sewage-sludge. Fuel 71(9):1071–1073. https://doi.org/10.1016/0016-2361(92)90116-6
Inoue S, Sawayama S, Dote Y, Ogi T (1997) Behaviour of nitrogen during liquefaction of dewatered sewage sludge. Biomass Bioenergy 12(6):473–475. https://doi.org/10.1016/S0961-9534(97)00017-2
Dote Y, Inoue S, Ogi T, S-y Y (1996) Studies on the direct liquefaction of protein-contained biomass: the distribution of nitrogen in the products. Biomass Bioenergy 11(6):491–498. https://doi.org/10.1016/S0961-9534(96)00045-1
Dote Y, Inoue S, Ogi T, Yokoyama S-Y (1998) Distribution of nitrogen to oil products from liquefaction of amino acids. Bioresour Technol 64(2):157–160. https://doi.org/10.1016/S0960-8524(97)00079-5
Kruse A, Krupka A, Schwarzkopf V, Gamard C, Henningsen T (2005) Influence of proteins on the hydrothermal gasification and liquefaction of biomass. 1. Comparison of different feedstocks. Ind Eng Chem Res 44(9):3013–3020. https://doi.org/10.1021/ie049129y
Kruse A, Maniam P, Spieler F (2007) Influence of proteins on the hydrothermal gasification and liquefaction of biomass. 2. Model compounds. Ind Eng Chem Res 46(1):87–96. https://doi.org/10.1021/ie061047h
Biller P, Johannsen I, dos Passos JS, Ottosen LDM (2018) Primary sewage sludge filtration using biomass filter aids and subsequent hydrothermal co-liquefaction. Water Res 130:58–68. https://doi.org/10.1016/j.watres.2017.11.048
Brilman DWF, Drabik N, Wądrzyk M (2017) Hydrothermal co-liquefaction of microalgae, wood, and sugar beet pulp. Biomass Conversion Biorefinery 7(4):445–454. https://doi.org/10.1007/s13399-017-0241-2
Zhang C, Tang X, Sheng L, Yang X (2016) Enhancing the performance of Co-hydrothermal liquefaction for mixed algae strains by the Maillard reaction. Green Chem 18(8):2542–2553. https://doi.org/10.1039/c5gc02953h
Ashoor SH, Zent JB (1984) Maillard browning of common amino acids and sugars. J Food Sci 49(4):1206–1207. https://doi.org/10.1111/j.1365-2621.1984.tb10432.x
Leiva GE, Naranjo GB, Malec LS (2017) A study of different indicators of Maillard reaction with whey proteins and different carbohydrates under adverse storage conditions. Food Chem 215:410–416. https://doi.org/10.1016/j.foodchem.2016.08.003
Inoue S, Noguchi M, Hanaoka T, Minowa T (2004) Organic compounds formed by thermochemical degradation of glucose-glycine melanoidins using hot compressed water. J Chem Eng Jpn 37(7):915–919. https://doi.org/10.1252/jcej.37.915
Peterson AA, Lachance RP, Tester JW (2010) Kinetic evidence of the Maillard reaction in hydrothermal biomass processing: glucose−glycine interactions in high-temperature, high-pressure water. Ind Eng Chem Res 49(5):2107–2117. https://doi.org/10.1021/ie9014809
Teri G, Luo L, Savage PE (2014) Hydrothermal treatment of protein, polysaccharide, and lipids alone and in mixtures. Energy Fuel 28(12):7501–7509. https://doi.org/10.1021/ef501760d
Posmanik R, Cantero DA, Malkani A, Sills DL, Tester JW (2017) Biomass conversion to bio-oil using sub-critical water: study of model compounds for food processing waste. J Supercrit Fluids 119:26–35. https://doi.org/10.1016/j.supflu.2016.09.004
Titirici M-M, Antonietti M, Baccile N (2008) Hydrothermal carbon from biomass: a comparison of the local structure from poly- to monosaccharides and pentoses/hexoses. Green Chem 10(11):1204–1212. https://doi.org/10.1039/B807009A
Minowa T, Inoue S, Hanaoka T, Matsumura Y (2004) Hydrothermal reaction of glucose and glycine as model compounds of biomass. J Jpn Inst Energy 83(10):794–798. https://doi.org/10.3775/jie.83.794
Déniel M, Haarlemmer G, Roubaud A, Weiss-Hortala E, Fages J (2016) Energy valorisation of food processing residues and model compounds by hydrothermal liquefaction. Renew Sust Energ Rev 54(Supplement C):1632–1652. https://doi.org/10.1016/j.rser.2015.10.017
Yaylayan VA (2003) Recent advances in the chemistry of Strecker degradation and Amadori rearrangement: implications to aroma and color formation. Food Sci Technol Res 9(1):1–6. https://doi.org/10.3136/fstr.9.1
Van Lancker F, Adams A, De Kimpe N (2010) Formation of pyrazines in Maillard model systems of lysine-containing dipeptides. J Agric Food Chem 58(4):2470–2478. https://doi.org/10.1021/jf903898t
Remón J, Laseca M, García L, Arauzo J (2016) Hydrogen production from cheese whey by catalytic steam reforming: preliminary study using lactose as a model compound. Energy Convers Manag 114:122–141. https://doi.org/10.1016/j.enconman.2016.02.009
Sınaǧ A, Kruse A, Schwarzkopf V (2003) Key compounds of the hydropyrolysis of glucose in supercritical water in the presence of K2CO3. Ind Eng Chem Res 42(15):3516–3521. https://doi.org/10.1021/ie030079r
Sınaǧ A, Kruse A, Rathert J (2004) Influence of the heating rate and the type of catalyst on the formation of key intermediates and on the generation of gases during hydropyrolysis of glucose in supercritical water in a batch reactor. Ind Eng Chem Res 43(2):502–508. https://doi.org/10.1021/ie030475+
Ren D, Song Z, Li L, Liu Y, Jin F, Huo Z (2016) Production of 2,5-hexanedione and 3-methyl-2-cyclopenten-1-one from 5-hydroxymethylfurfural. Green Chem 18(10):3075–3081. https://doi.org/10.1039/c5gc02493e
Sheehan JD, Savage PE (2017) Molecular and lumped products from hydrothermal liquefaction of bovine serum albumin. ACS Sustain Chem Eng 5(11):10967–10975. https://doi.org/10.1021/acssuschemeng.7b02854
Hwang H-I, Hartman TG, Rosen RT, Lech J, Ho C-T (1994) Formation of pyrazines from the Maillard reaction of glucose and lysine-.alpha.-amine-15N. J Agric Food Chem 42(4):1000–1004. https://doi.org/10.1021/jf00040a031