Hydrophobicity, topography in membranes and photosensitization of silicon phthalocyanines with axial ligands of varying lengths
Tóm tắt
Six amphiphilic silicon phthalocyanines (SiPc’s) axially linked to a dimethylated amino alkyl group of varying length have been examined for their potential suitability as photosensitizers for photodynamic therapy (PDT). This group of molecules was chosen because the length of the axial ligand might place the chromophoric part of the molecule at different vertical depths in the membrane and possibly affect the extent of membrane localized damage caused by singlet oxygen. We tested the relative penetration depth of the SiPc groups in the membrane by the extent to which their fluorescence was quenched by external iodide ions. We also measured singlet oxygen quantum yields of the SiPc’s in a liposome membrane, using the fluorescent target for singlet oxygen, 9,10-dimethylanthracene. The hydrophobicity parameters, LogP, were calculated and were also measured. Some correlation was found between them and Kb’s, the binding constants for liposomes. The effect of the axial ligand’s length is less striking than in similar cases with hematoporphyrins and protoporphyrins. We link this smaller effect with a bending of the linker chain that enables, sterically, a better positioning of the sensitizer molecules within the ordered lipid layer structure.
Tài liệu tham khảo
T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan and Q. Peng, Photodynamic therapy, J. Natl. Cancer Inst., 1998, 90, 889–905.
J. A. Hampton, P. J. Goldblatt and S. H. Selman, Photodynamic therapy: a new modality for the treatment of cancer, Annu. Clin. Labor. Science, 1994, 24, 203–210.
J. Moan, K. Berg, E. Kvam, A. Western, Z. Malik, A. Ruck, and H. Schneckenburger, in Photosensitizing Compounds: Their Chemistry, Biology and Clinical Use, ed. G. Bock and S. Harnett, John Wiley and Sons, New York, 1989, pp. 95–111.
T. J. Dougherty, A brief history of clinical photodynamic therapy development at Roswell Park Cancer Institute, J. Clin. Laser Med. Surgery, 1996, 14, 219–221.
S. K. Pushpan, S. Venkatraman, V. G. Anand, J. Sankar, D. Parmeswaran, S. Ganesan and T. K. Chandrashekar, Porphyrins in photodynamic therapy–A search for ideal photosensitizers, Curr. Med. Chem.: Anti-cancer Agents, 2002, 2, 187–207.
E. A. Lukyanets, Phthalocyanines as photosensitizers in the photodynamic therapy of cancer, J. Porphyrins Phthalocyanines, 1998, 3, 424–432.
E. Ben-Hur and I. Rosenthal, The Phthalocyanines: a new class of mammalian cell photosensitizers with a potential for cancer phototherapy, Int. J. Radiat. Biol., 1985, 47, 145–147.
J. P. Daziano, S. Steenken, C. Chabannon, P. Mannoni, M. Chanon and M. Julliard, Photophysical and redox properties of a series of phthalocyanines: relation with their photodynamic activities on TF-1 and Daudi leukemic cells, Photochem. Photobiol., 1996, 64, 712–719.
P. Margaron, M. J. Gregoire, V. Scasnar, H. Ali, J. E. van Lier, Structure-photodynamic activity relationships of a series of 4-substituted zinc phthalocyanines, Photochem. Photobiol., 1996, 63, 217–223.
C. M. Allen, W. M. Sharman, J. E. van Lier, Current status of phthalocyanines in the photodynamic therapy of cancer, J. Porphyrines Phthalocyanines., 2001, 5, 161–169.
C. Y. Anderson, K. Freye, K. A. Tubesing, Y. S. Li, M. E. Kenney, H. Mukhtar and C. A. Elmets, A comparative analysis of silicon phthalocyanine photosensitizers with a potential for in vivo photodynamic therapy of RIF-1 tumors in C3H mice, Photochem. Photobiol., 1998, 67, 332–336.
E. Ben-Hur, H. Margolis-Nunno, S. J. Ryfkin, P. Gottlieb, S. Lustigman, M. E. Kenney and B. Horowitz, Photochemical Sterilization of Blood for Transfusion, in Photodiagnostic and Phototherapeutic Techniques in Medicine, ed. G. Jori and C. Perria, Springer Verlag, New York, 1995, pp. 135–143.
M. J. Egorin, E. G. Zuhowski, D. L. Sentz, J. M. Dobson, P. S. Callery and J. L. Eiseman, Plasma pharmacokinetics and tissue distribution in CD2F1 mice of Pc4 (NSC 676418), a silicone phthalocyanine photodynamic sensitizing agent, Cancer Chemother. Pharmacol., 1999, 44, 283–294.
V. C. Colussi, D. K. Feyes, J. W. Mulvihill, Y. S. Li, M. E. Kenney, C. A. Elmets, N. L. Oleinick and H. Mukhtar, Phthalocyanine 4 (Pc 4) photodynamic therapy of human OVCAR-3 tumor xenografts, Photochem. Photobiol., 1999, 69, 236–241.
B. Ehrenberg, J. L. Anderson and C. S. Foote, Kinetics and yield of singlet oxygen photosensitized by hypericin in organic and biological media, Photochem. Photobiol., 1998, 68, 135–140.
A. Lavi, H. Weitman, R. T. Holmes, K. M. Smith and B. Ehrenberg, The depth of porphyrin in a membrane and the membrane’s physical properties affect the photosensitizing efficiency, Biophys. J., 2002, 82, 2101–2110.
I. Bronshtein, M. Afri, H. Weitman, A. A. Frimer, K. M. Smith and B. Ehrenberg, Porphyrin depth in lipid bilayers as determined by iodide and parallax fluorescence quenching methods and its effect on photosensitizing efficiency, Biophys. J., 2004, 87, 1155–1164.
I. Bronshtein, K. M. Smith and B. Ehrenberg, The effect of pH on the topography of porphyrins in lipid membranes, Photochem. Photobiol., 2005, 81, 446–451.
I. Bronshtein, S. Aulova, A. Juzeniene, V. Iani, L. W. Ma, K. M. Smith, Z. Malik, J. Moan and B. Ehrenberg, In vitro and in vivo photosensitization by protoporphyrins possessing different lipophilicities and vertical localization in the membrane, Photochem. Photobiol., 2006, 82, 1319–1325.
J. He, H. E. Larkin, Y-S. Li, B. D. Rihter, S. I. A. Zaidi, M. A. J. Rodgers, H. Mukhtar, M. E. Kenney and N. L. Oleinick, The synthesis, photophysical and photobiological properties and in vitro structure–activity relationships of a set of silicon phthalocyanine PDT photosensitizers, Photochem. Photobiol., 1997, 65, 581–6.
M. Roslaniec, H. Weitman, D. Freeman, Y. Mazur and B. Ehrenberg, Liposome binding constants and singlet oxygen quantum yields of hypericin, tetrahydroxy helianthrone and their derivatives: studies in organic solutions and in liposomes, J. Photochem. Photobiol., B, 2000, 57, 149–158.
R. Schmidt and E. Afshari, Effect of solvent on the phosphorescence rate constant of singlet molecular oxygen (1?g), J. Phys. Chem., 1990, 94, 4377–8.
P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill, New York, 1969, ch. 5.
T. Masuda, T. Jikihara, K. Nakamura, A. Kimura, T. Takagi and H. Fujiwara, Introduction of solvent-accessible surface area in the calculation of the hydrophobicity parameter log P from an atomistic approach, J. Pharmaceut. Sci., 1997, 86, 57–63.
D. W. Hawker and D. W. Connell, Octanol-water partition coefficients of polychlorinated biphenyl congeners, Environ. Sci. Technol., 1988, 22, 382–387.
S. Pinsuwan, A. Li and S. H. Yalkowsky, Correlation of octanol/water solubility ratios and partition coefficients, J. Chem. Eng. Data, 1995, 40, 623–626.
P. Guardado, M. Balon, C. Carmona, M. A. Munoz and C. Domene, Partition coefficients of indoles and betacarbolines, J. Pharmaceut. Sci., 1997, 86, 106–109.
C. Tanford, The hydrophobic effect: Formation of micelles and biological membranes, John Wiley and Sons, New York, 1973.
M. Kepczynski, R. P. Pandian, K. M. Smith and B. Ehrenberg, Do liposome-binding constants of porphyrins correlate with their measured and predicted partitioning between octanol and water?, Photochem. Photobiol., 2002, 76, 127–134.
M. Langner and S. W. Hui, Iodide penetration into lipid bilayers as a probe of membrane lipid organization, Chem. Phys. Lipids, 1991, 60, 127–132.
F. M. Menger, J. S. Keiper and K. L. Caran, Depth profiling with giant vesicle membranes, J. Am. Chem. Soc., 2002, 124, 11842–11843.
H. M. Anula, J. C. Berlin, H. Wu, Y. Li, X. Peng, M. E. Kenney, M. A. J. Rodgers, Synthesis and photophysical properties of Silicon Phthalocyanines with axial siloxy ligands bearing alkylamine termini, J. Phys. Chem. A, 2006, 110, 5215–5223.