Chiết xuất diosgenin từ Dioscorea nipponica Makino bằng cách thủy phân các hợp chất rắn từ tính sulfonat

Springer Science and Business Media LLC - Tập 21 - Trang 1-11 - 2019
Farong Zhang1, Bowei Shen1, Wenxiu Jiang1, Hui Yuan1, Hong Zhou1
1College of Chemistry and Environmental Technology, Wuhan Institute of Technology, Wuhan, China

Tóm tắt

Việc chiết xuất diosgenin từ thân rễ của Dioscorea bằng quá trình thủy phân xúc tác trên các axit rắn có thể tái sử dụng là một trong những phương pháp thân thiện với môi trường nhất để chuyển đổi sinh khối thành hóa chất. Trong bài báo này, một axit rắn từ tính, Fe3O4@SiO2@NH-(CH2)2-NH2@SO3H có kích thước hạt khoảng 80 nm, đã được tổng hợp bằng cách sử dụng Fe3O4 (~ 20 nm) làm lõi từ và sau đó phủ lần lượt bằng tetraethyl orthosilicate (TEOS) và N-{3-(Trimethoxysilyl) propyl} ethylenediamine (TMPED) thông qua các phản ứng sol-gel trong dung dịch nước/ethanol, tiếp theo là quá trình sulfon hóa bằng axit clorosulfonic. Axit rắn được đặc trưng bởi quang phổ hồng ngoại biến đổi Fourier (FTIR), phân tích nhiệt trọng lượng (TGA), kính hiển vi điện tử quét (SEM), nhiễu xạ tia X (XRD), máy đo từ mẫu rung (VSM) và quang phổ điện tử tia X (XPS). Chất lượng axit trên bề mặt của axit rắn là 1.01 mmol/g, được đo bằng phương pháp chuẩn độ quay lại. Axit rắn đã chuẩn bị được sử dụng để thủy phân và chiết xuất diosgenin từ Dioscorea nipponica Makino (DNM). Kết quả cho thấy rằng axit rắn từ tính có hoạt tính thủy phân cao hơn 2.5 M axit hydrochloric trong cùng điều kiện thủy phân, ở 110 °C trong 5 giờ. Ngoài ra, axit rắn từ tính có thể dễ dàng tách ra khỏi hỗn hợp phản ứng bằng cách áp dụng nam châm và được tái sử dụng nhiều lần mà không mất đi hoạt tính đáng kể. Công trình này có giá trị ứng dụng tiềm năng cho việc chiết xuất diosgenin từ thực vật.

Từ khóa


Tài liệu tham khảo

Afradi M, Foroughifar N, Pasdar H, Moghanian H (2016) L-proline N-sulfonic acid-functionalized magnetic nanoparticles: a novel and magnetically reusable catalyst for one-pot synthesis of 3,4-dihydropyrimidine-2-(1H)-thiones under solvent-free conditions. RSC Adv 6:59343–59351 Alemi-Tameh F, Safaei-Ghomi J, Mahmoudi-Hashemi M, Teymuri R (2016) A comparative study on the catalytic activity of Fe3O4@SiO2–SO3H and Fe3O4@SiO2–NH2 nanoparticles for the synthesis of spiro [chromeno [2, 3-c] pyrazole-4, 3′-indoline]-diones under mild conditions. Res Chem Intermediat 42:6391–6406 Che YL, Xu Y, Wang RJ, Chen L (2017) Rapid fluorescence detection of pathogenic bacteria using magnetic enrichment technique combined with magnetophoretic chromatography. Anal Bioanal Chem 409:4709–4718 Deng YH, Cai Y, Sun ZK, Liu J, Liu C, Wei J, Li W, Liu C, Wang Y, Zhao DY (2010) Multifunctional mesoporous composite microspheres with well-designed nanostructure: a highly integrated catalyst system. J Am Chem Soc 132:8466–8473 Elhamifar D, Ramazani Z, Norouzi M, Mirbagheri R (2018) Magnetic iron oxide/phenylsulfonic acid: a novel, efficient and recoverable nanocatalyst for green synthesis of tetrahydrobenzo[b]pyrans under ultrasonic conditions. J Colloid Interf Sci 511:392–401 Elsayed I, Mashaly M, Eltaweel F, Jackson MA, Hassan EB (2018) Dehydration of glucose to 5-hydroxymethylfurfural by a core-shell Fe3O4@SiO2-SO3H magnetic nanoparticle catalyst. Fuel 221:407–416 Fan Z, Zhou L, Xiong TQ, Zhou JS, Li QG, Tan QL, Zhao ZX, Jin J (2015) Antiplatelet aggregation triterpene saponins from the barks of Ilex rotunda. Fitoterapia 101:19–26 Gill CS, Price BA, Jones CW (2007) Sulfonic acid-functionalized silica-coated magnetic nanoparticle catalysts. J Catal 251:145–152 Hu L, Li Z, Wu Z, Lin L, Zhou SY (2016) Catalytic hydrolysis of microcrystalline and rice straw-derived cellulose over a chlorine-doped magnetic carbonaceous solid acid. Ind Crop Prod 84:408–417 Karami K, Najvani SD, Naeini NH, Hervés P (2015) Palladium particles from oxime-derived palladacycle supported on Fe3O4/oleic acid as a catalyst for the copper-free Sonogashira cross-coupling reaction. Chinese J Catal 36:1047–1053 Khorshidi A, Shariati S (2015) Efficient synthesis of 3,3′-bisindoles catalyzed by Fe3O4@MCM-48-OSO3H magnetic core-shell nanoparticles. Chinese J Catal 36:778–784 Koukabi N, Kolvari E, Zolfigol MA, Khazaei A, Shaghasemi BS, Fasahati B (2012) A magnetic particle-supported sulfonic acid catalyst: tuning catalytic activity between homogeneous and heterogeneous catalysis. Adv Synth Catal 354:2001–2008 Lai DM, Deng L, Guo QX, Fu Y (2011a) Hydrolysis of biomass by magnetic solid acid. Energy Environ Sci 4:3552–3557 Lai DM, Deng L, Li J, Liao B, Guo QX, Fu Y (2011b) Hydrolysis of cellulose into glucose by magnetic solid acid. ChemSusChem 4:55–58 Lei L, Zhang W, Gao ZC, Liu L, Yu XD (2018) Preparation of diosgenin from Dioscorea zingiberensis C. H. Wright by stepwise biocatalysis-foam separation-preparative high-performance liquid chromatography (P-HPLC) European Food Research and Technology 244:1447–1452 Le X, Dong ZP, Liu YS, Jin ZC, Huy TD, Le M, Ma JT (2014) Palladium nanoparticles immobilized on core–shell magnetic fibers as a highly efficient and recyclable heterogeneous catalyst for the reduction of 4-nitrophenol and Suzuki coupling reactions. J Mater Chem A 2:19696–19706 Li JQ, Liang XZ (2017) Magnetic solid acid catalyst for biodiesel synthesis from waste oil. Energ Convers Manag 141:126–132 Li PQ, Mou Y, Lu SQ, Sun WB, Lou JF, Yin CH, Zhou LG (2012) Quantitative determination of diosgenin in Dioscorea zingiberensis cell cultures by microplate-spectrophotometry and high-performance liquid chromatography. Afr J Pharm Pharmaco 6:1186–1193 Maleki A, Hajizadeh Z, Firouzi-Haji R (2018) Eco-friendly functionalization of magnetic halloysite nanotube with SO3H for synthesis of dihydropyrimidinones. Micropor Mesopor Mat 259:46–53 Man SL, Gao WY, Zhang YJ, Huang LQ, Liu CX (2010) Chemical study and medical application of saponins as anti-cancer agents. Fitoterapia 81:703–714 Mirfakhraei S, Hekmati M, Eshbala FH, Veisi H (2018) Fe3O4/PEG-SO3H as a heterogeneous and magnetically-recyclable nanocatalyst for the oxidation of sulfides to sulfones or sulfoxides. New J Chem 42:1757–1761 Mirhosseyni MS, Nemati F, Elhampour A (2016) Hollow Fe3O4@DA-SO3H: an efficient and reusable heterogeneous nano-magnetic acid catalyst for synthesis of dihydropyridine and dioxodecahydroacridine derivatives. J Iran Chem Soc 14:791–801 Mohammadi R, Kassaee MZ (2013) Sulfochitosan encapsulated nano-Fe3O4 as an efficient and reusable magnetic catalyst for green synthesis of 2-amino-4H-chromen-4-yl phosphonates. J Mol Catal A Chem 380:152–158 Moses T, Papadopoulou KK, Osbourn A (2014) Metabolic and functional diversity of saponins, biosynthetic intermediates and semi-synthetic derivatives. Crit Rev Biochem Mol Biol 49:439–462 Mukherjee S, Sarkar S, Pramanik A (2018) A sustainable synthesis of functionalized pyrrole fused coumarins under solvent-free conditions using magnetic nanocatalyst and a new route to Polyaromatic Indolocoumarins. ChemistrySelect 3:1537–1544 Nasr-Esfahani M, Rafiee Z, Montazerozohori M, Kashi H (2016) A highly efficient magnetic solid acid nanocatalyst for the synthesis of new bulky heterocyclic compounds. RSC Adv 6:47298–47313 Pang X, Huang HZ, Zhao Y, Xiong CQ, Yu LY, Ma BP (2015) Conversion of furostanol saponins into spirostanol saponins improves the yield of diosgenin from Dioscorea zingiberensis by acid hydrolysis. RSC Adv 5:4831–4837 Peng YE, Yang ZH, Wang YX, Liu ZY, Bao JG, Hong Y (2011) Pathways for the steroidal saponins conversion to diosgenin during acid hydrolysis of Dioscorea zingiberensis C. H Wright Chem Eng Res Des 89:2620–2625 Rajkumari K, Kalita J, Das D, Rokhum L (2017) Magnetic Fe3O4@silica sulfuric acid nanoparticles promoted regioselective protection/deprotection of alcohols with dihydropyran under solvent-free conditions. RSC Adv 7:56559–56565 Rothrock JW, Stoudt TH, Garber JD (1955) Isolation of diosgenin by microbiological hydrolysis of saponin. Arch Biochem Biophys 57:151–155 Shang MY, Wang WQ, Zou HZ, Ren GH (2016) Coating Fe3O4 spheres with polypyrrole-Pd composites and their application as recyclable catalysts. Synthetic Met 221:142–148 Shao JG, Xie XC, Xi YJ, Liu XN, Yang YX (2013) Characterization of Fe3O4/SiO2 composite core-shell nanoparticles synthesized in isopropanol medium. Glas Phys Chem 39:329–335 Shariati S, Faraji M, Yamini Y, Rajabi AA (2011) Fe3O4 magnetic nanoparticles modified with sodium dodecyl sulfate for removal of safranin O dye from aqueous solutions. Desalination 270:160–165 Sun LJ, He J, An SS, Zhang JW, Zheng JM, Ren D (2013) Recyclable Fe3O4@SiO2-Ag magnetic nanospheres for the rapid decolorizing of dye pollutants. Chinese J Catal 34:1378–1385 Taheri S, Veisi H, Hekmati M (2017) Application of polydopamine sulfamic acid-functionalized magnetic Fe3O4 nanoparticles (Fe3O4@PDA-SO3H) as a heterogeneous and recyclable nanocatalyst for the formylation of alcohols and amines under solvent-free conditions. New J Chem 41:5075–5081 Tava A, Biazzi E, Mella M, Quadrelli P, Avato P (2017) Artefact formation during acid hydrolysis of saponins from Medicago spp. Phytochemistry 138:116–127 Thombal RS, Jadhav VH (2016a) Application of glucose derived magnetic solid acid for etherification of 5-HMF to 5-EMF, dehydration of sorbitol to isosorbide, and esterification of fatty acids. Tetrahedron Lett 57:4398–4400 Thombal RS, Jadhav VH (2016b) Facile O-glycosylation of glycals using Glu-Fe3O4-SO3H, a magnetic solid acid catalyst. RSC Adv 6:30846–30851 Wang JR, Yau LF, Gao WN, Liu Y, Yick PW, Liu L, Jiang ZH (2014b) Quantitative comparison and metabolite profiling of saponins in different parts of the root of Panax notoginseng. J Agric Food Chem 62:9024–9034 Wang J, Yang KD, Chen J (2004) Determination of Diosgenin by spectrophotometry. Chinese J Anal Lab 23:73–75 Wang P, Ma CY, Chen SW, Zhu S, Lou ZX, Wang HX (2014) Conversion of steroid saponins into diosgenin by catalytic hydrolysis using acid-functionalized ionic liquid under microwave irradiation. J Clean Prod 79:265–270 Wang YQ, Zou BF, Gao T, Wu XP, Lou SY, Zhou SM (2012) Synthesis of orange-like Fe3O4/PPy composite microspheres and their excellent Cr(vi) ion removal properties. J Mater Chem 22:9034–9040 Xiong Y, Zhang ZH, Wang X, Liu B, Lin JT (2014) Hydrolysis of cellulose in ionic liquids catalyzed by a magnetically-recoverable solid acid catalyst. Chem Eng J 235:349–355 Yang H, Yin HW, Shen YP, Xia GH, Zhang B, Wu XY, Cai BC, Tam JP (2016) A more ecological and efficient approach for producing diosgenin from Dioscorea zingiberensis tubers via pressurized biphase acid hydrolysis. J Clean Prod 131:10–19 Yan W, Ji L, Hang S, Shun Y (2013) New ionic liquid-based preparative method for diosgenin from Rhizoma dioscoreae nipponicae. Pharmacogn Mag 9:250–254 Yu CJ, Li ZH, Yin HW, Xia GH, Shen YP, Yang H, Jing G, Jia XB (2019) Green production of diosgenin from Discorea nipponica Makino tubers based on pressurized biphase acid hydrolysis via response surface methodology optimization. Green Chem Lett Rev 12:79–88 Zhang CB, Wang HY, Liu FD, Wang L, He H (2013) Magnetic core–shell Fe3O4@C-SO3H nanoparticle catalyst for hydrolysis of cellulose. Cellulose 20:127–134 Zhou JJ, Li YN, Sun HB, Tang ZK, Qi L, Liu L, Ai YJ, Li S, Shao ZX, Liang QL (2017) Porous silica-encapsulated and magnetically recoverable Rh NPs: a highly efficient, stable and green catalyst for catalytic transfer hydrogenation with “slow-release” of stoichiometric hydrazine in water. Green Chem 19:1–7