Hydrogenation without H2 Using a Palladium Membrane Flow Cell
Tài liệu tham khảo
Schiffer, 2017, Electrification and Decarbonization of the Chemical Industry, Joule, 1, 10, 10.1016/j.joule.2017.07.008
Service, 2018, Liquid Sunshine, Science, 361, 120, 10.1126/science.361.6398.120
Weekes, 2018, Electrolytic CO2 Reduction in a Flow Cell, Acc. Chem. Res., 51, 910, 10.1021/acs.accounts.8b00010
Buttler, 2018, Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: a review, Renew. Sustain. Energy Rev., 82, 2440, 10.1016/j.rser.2017.09.003
Bonrath, 2012, Hydrogenation in the Vitamins and Fine Chemicals Industry – An Overview
Rylander, 1979
Jang, 2005, Hydrogenation for Low Trans and High Conjugated Fatty Acids, Compr. Rev. Food Sci. Food Saf., 4, 22, 10.1111/j.1541-4337.2005.tb00069.x
Knothe, 2010, Biodiesel and renewable diesel: a comparison, Pror. Energy Combust. Sci., 36, 364, 10.1016/j.pecs.2009.11.004
Sherbo, 2019, Efficient Electrocatalytic Hydrogenation with a Palladium Membrane Reactor, J. Am. Chem. Soc., 141, 7815, 10.1021/jacs.9b01442
Delima, 2019, Supported palladium membrane reactor architecture for electrocatalytic hydrogenation, J. Mater. Chem. A, 7, 26586, 10.1039/C9TA07957B
Sherbo, 2018, Complete electron economy by pairing electrolysis with hydrogenation, Nat. Catal., 1, 501, 10.1038/s41929-018-0083-8
Inoue, 1996, Successive hydrogenation of styrene at a palladium sheet electrode combined with electrochemical supply of hydrogen, Chem. Commun.0, 55, 10.1039/cc9960000055
Iwakura, 1997, A new hydrogenation system of 4-methylstyrene using a palladinized palladium sheet electrode, J. Electroanal. Chem., 431, 43, 10.1016/S0022-0728(97)00241-6
Wicke, 1978, Hydrogen in palladium and palladium alloys, 73
Dittmeyer, 2001, Membrane reactors for hydrogenation and dehydrogenation processes based on supported palladium, J. Mol. Catal. Chem., 173, 135, 10.1016/S1381-1169(01)00149-2
Maoka, 1981, Hydrogen absorption by palladium electrode polarized in sulfuric acid solution containing surface active substances—I. The cathodic region, Electrochim. Acta, 26, 607, 10.1016/0013-4686(81)80027-8
Yan, 2019, Mixed Electron-Proton Conductors Enable Spatial Separation of Bond Activation and Charge Transfer in Electrocatalysis, J. Am. Chem. Soc., 141, 11115, 10.1021/jacs.9b03327
Iwakura, 1998, New hydrogenation systems of unsaturated organic compounds using noble metal-deposited palladium sheet electrodes with three-dimensional structures, J. Mater. Res., 13, 821, 10.1557/JMR.1998.0105
Iwakura, 1998, Catalytic reduction of carbon dioxide with atomic hydrogen permeating through palladized Pd sheet electrodes, J. Electroanal. Chem., 459, 167, 10.1016/S0022-0728(98)00320-9
Iwakura, 1999, Construction of a new dehydrogenation system using a two-compartment cell separated by a palladized Pd sheet electrode, J. Electroanal. Chem., 463, 116, 10.1016/S0022-0728(98)00425-2
Inoue, 2003, A dechlorination system for 4-chlorotoluene using a two-compartment cell separated by a palladized ion exchange membrane, J. Electroanal. Chem., 560, 87, 10.1016/j.jelechem.2003.06.001
Sato, 2017, Low-temperature Hydrogenation of Toluene by Electrolysis of Water with Hydrogen Permeable Palladium Membrane Electrode, Chem. Lett., 46, 477, 10.1246/cl.161164
Wang, 2018, Techno-Economic Challenges of Fuel Cell Commercialization, Engineering., 4, 352, 10.1016/j.eng.2018.05.007
Plutschack, 2017, The Hitchhiker’s Guide to Flow Chemistry, Chem. Rev., 117, 11796, 10.1021/acs.chemrev.7b00183
Pletcher, 2018, Flow Electrolysis Cells for the Synthetic Organic Chemistry Laboratory, Chem. Rev., 118, 4573, 10.1021/acs.chemrev.7b00360
Horiuti, 1934, Exchange reactions of hydrogen on metallic catalysts, Trans. Faraday Soc., 30, 1164, 10.1039/tf9343001164
Wilhite, 2002, Kinetics of Phenylacetylene Hydrogenation over Pt/γ-Al2O3 Catalyst, Ind. Eng. Chem. Res., 41, 3345, 10.1021/ie0201112
Mattson, 2013, Heterogeneous Catalysis: The Horiuti–Polanyi Mechanism and Alkene Hydrogenation, J. Chem. Educ., 90, 613, 10.1021/ed300437k
Studt, 2008, Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene, Science, 320, 1320, 10.1126/science.1156660
Al-Ammar, 1978, Hydrogenation of acetylene over supported metal catalysts. Part 1.—Adsorption of [14 C] acetylene and [14 C] ethylene on silica supported rhodium, iridium and palladium and alumina supported palladium, J. Chem. Soc. Faraday Trans., 74, 195, 10.1039/f19787400195
Sherbo, 2018, Accurate Coulometric Quantification of Hydrogen Absorption in Palladium Nanoparticles and Thin Films, Chem. Mater., 30, 3963, 10.1021/acs.chemmater.8b01324
Teschner, 2008, The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation, Science, 320, 86, 10.1126/science.1155200
Wilde, 2008, Influence of carbon deposition on the hydrogen distribution in Pd nanoparticles and their reactivity in olefin hydrogenation, Angew. Chem. Int. Ed., 47, 9289, 10.1002/anie.200801923
Huang, 1998, Effect of Ag-promotion on Pd catalysts by XANES, Catal. Lett., 53, 155, 10.1023/A:1019022326090
Khan, 2006, Acetylene and Ethylene Hydrogenation on Alumina Supported Pd-Ag Model Catalysts, Catal. Lett., 108, 159, 10.1007/s10562-006-0041-y
Ludwig, 2011, A kinetic study on the conversion of cis-2-butene with deuterium on a Pd/Fe3O4 model catalyst, Phys. Chem. Chem. Phys., 13, 966, 10.1039/C0CP00078G
Ludwig, 2011, Olefin hydrogenation on Pd model supported catalysts: new mechanistic insights, J. Catal., 284, 148, 10.1016/j.jcat.2011.10.010
Doyle, 2003, Hydrogenation on metal surfaces: why are nanoparticles more active than single crystals?, Angew. Chem. Int. Ed., 42, 5240, 10.1002/anie.200352124
Daley, 1994, Ethylene Hydrogenation on Ni(111) by Bulk Hydrogen, J. Am. Chem. Soc., 116, 6001, 10.1021/ja00092a074