Hydrogen-storage materials for mobile applications

Nature - Tập 414 Số 6861 - Trang 353-358 - 2001
L. Schlapbach1, Andreas Züttel2
1EMPA, Swiss Federal Laboratories for Materials Research and Testing, Dübendorf, CH-8600, Switzerland
2Physics Department, University of Fribourg, Fribourg CH-1700, Switzerland

Tóm tắt

Từ khóa


Tài liệu tham khảo

Winter, C. J. & Nitsch, J. Hydrogen as an Energy Carrier: Technologies, Systems, Economy (Springer, 1988).

Bain, A. & Van Vorst, W. D. Int. J. Hydrogen Energy 24, 399–403 (1999).

Shell Hydrogen, Hydro-Québec (HQ) & Gesellschaft für Elektrometallurgie (GfE). Hydrogen storage joint venture to be established. 〈 http://www.shell.com 〉 Press release (12-07-2001).

Nellis, W. J., Louis, A. A. & Ashcroft, N. W. Metallization of fluid hydrogen. Phil. Trans. R. Soc. Lond. A 356, 119–135 (1998).

Orimo, S.-I. et al. Hydrogen in the mechanically prepared nanostructured graphite. Appl. Phys. Lett. 75, 3093 (1999).

Orimo, S., Matsushima, T., Fujii, H., Fukunaga, T. & Majer, G. Defective carbon for hydrogen storage—thermal desorption property of the mechanically prepared nanostructured graphite. J. Appl. Phys. (in the press).

Stan, G. & Cole, M. W. Hydrogen adsorption in nanotubes. J. Low Temp. Phys. 110, 539–544 (1998).

Hirscher, M. (ed.) Hydrogen storage in nanoscale carbon and metals. Appl. Phys. A (special issue) 72, 2 (2001).

Sholl, C. A. & Gray, E. MacA. (eds) Proc. Int. Symp. Metal Hydrogen Systems—Fundamentals and Applications, Noosa, Australia, 1–6 October 2000. J. Alloys Compounds (in the press).

Chambers, A., Park, C., Baker, R. T. K. & Rodriguez, N. M. Hydrogen storage in graphite nanofibers. Phys. Chem. B 102, 4253–4256 (1998).

Dillon, A. C. et al. Storage of hydrogen in single-walled carbon nanotubes. Nature 386, 377–379 (1997).

Dillon, A. C. et al. Carbon nanotube materials for hydrogen storage. Proc. 2000 DOE/NREL Hydrogen program review, 8–10 May 2000.

Hirscher, M. et al. Hydrogen storage in sonicated carbon materials. Appl. Phys. A 72, 129–132 (2001).

Züttel A. et al. Hydrogen sorption by carbon nanotubes and other carbon nanostructures. J. Alloys Compounds (in the press).

Chen, P., Wu, X., Lin, J. & Tan, K. L. High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures. Science 285, 91–93 (1999).

Hirscher, M. et al. Hydrogen storage in carbon nanostructures. J. Alloys Compounds (in the press).

Nijkamp, M. G., Raaymakers, J. E. M. J., Van Dillen, A. J. & De Jong, K. P. Hydrogen storage using physisorption—materials demands. Appl. Phys. A 72, 619–623 (2001).

Züttel, A. et al. Hydrogen storage in carbon nanostructures. Int. J.Hydrogen Energy (in the press).

Enoki, T., Shindo, K. & Sakamoto, N. Electronic properties of alkali-metal-hydrogen-graphite intercalation compounds. Z. Phys. Chem. 181, 75–82 (1993).

Schlapbach, L. (ed.) Hydrogen in Intermetallic Compounds I. Electronic, Thermodynamic, and Crystallographic Properties, Preparation (Topics in Applied Physics Vol. 63) (Springer, 1988).

Schlapbach, L. (ed.) Hydrogen in Intermetallic Compounds II. Surface and Dynamic Properties, Applications (Topics in Applied Physics Vol. 67) (Springer, 1992).

Sandrock, G. & Thomas, G. The IEA/DOC/SNL on-line hydride databases. Appl. Phys. A 72, 153–155 (2001).

Sakai, T., Natsuoka, M. & Iwakura, C. Rare earth intermetallics for metal–hydrogen batteries. Handb. Phys. Chem. Rare Earths 21, 135–180 (1995).

Latroche, M., Percheron-Guegan, A. & Chabre, Y. Influence of cobalt content in MmNi(4.3–x)Mn0.3Al0.4Cox alloy (x = 0.36 and 0.69) on its electrochemical behaviour studied by in situ neutron diffraction. J. Alloys Compounds 295, 637–642 (1999).

Schlapbach, L., Felix Meli, F., Züttel, A., Westbrook, J. H. & Fleischer, R. L. (eds) in Intermetallic Compounds: Principles and Practice Vol. 2, Ch. 22 (Wiley, 1994).

Zaluska, A., Zaluski, L. & Stroem-Olsen, J. O. Structure, catalysis and atomic reactions on the nano-scale: a systematic approach to metal hydrides for hydrogen storage. Appl. Phys. A 72, 157 (2001).

Yvon, K. Complex transition metal hydrides. Chimia 52, 613–619 (1998).

Liu, F. J. & Suda, S. A method for improving the long-term storability of hydriding alloys by air water exposure. J. Alloys Compounds 231, 742–750 (1995).

Akiba, E. & Iba, H. Hydrogen absorption by Laves phase related BCC solid solution. Intermetallics 6, 461–470 (1998).

Kuriiwa, T. et al. New V-based alloys with high protium absorption and desorption capacity. J. Alloys Compounds 295, 433–436 (1999).

Tsukahara, M. et al. Hydrogen storage and electrode properties of V-based solid solution type alloys prepared by a thermic process. J. Electrochem. Soc. 147, 2941–2944 (2000).

Inoue, H. et al. Effect of ball-milling with Ni and Raney Ni on surface structural characteristics of TiV2.1Ni0.3 alloy. J. Alloys Compounds 325, 299–303 (2001).

Bogdanovic, B. & Schwickardi, M. Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials. J. Alloys Compounds 253, 1–9 (1997).