Hydrogen production from water splitting on CdS-based photocatalysts using solar light
Tóm tắt
Từ khóa
Tài liệu tham khảo
Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 37–38
Shangguan W F. Progress in hydrogen production from water splitting using solar light. Chinese Journal of Inorganic Chemistry, 2001, 17(5): 619–624
Hosono E, Fujihara S, Imai H, Honma I, Masaki I, Zhou H S. Onestep synthesis of nano-micro chestnut TiO2 with rutile nanopins on the microanatase octahedron. ACS Nano, 2007, 1(4): 273–278
Chuangchote S, Jitputti J, Sagawa T, Yoshikawa S. Photocatalytic activity for hydrogen evolution of electrospun TiO2 nanofibers. ACS Applied Materials & Interfaces, 2009, 1(5): 1140–1143
Weng C C, Hsu K F, Wei K H. Synthesis of arrayed TiO2 needlelike nanostructures via a polystyrene-block-poly (4-vinylpyridine) diblock copolymer template. Chemistry of Materials, 2004, 16(21): 4080–4086
Wang H Q, Wu Z B, Liu Y. A simple two-step template approach for preparing carbon-doped mesoporous TiO2. Journal of Physical Chemistry C, 2009, 113(30): 13317–13324
Wang D A, Liu Y, Wang C W, Zhou F, Liu W M. Highly flexible coaxial nanohybrids made from porous TiO2 nanotubes. ACS Nano, 2009, 3(5): 1249–1257
Irie H, Watanabe Y, Hashimoto K. Nitrogen-concentration dependence on photocatalytic activity of TiO2 − x Nx powders. Journal of Physical Chemistry B, 2003, 107(23): 5483–5486
Khan S U, Al-Shahry M, Ingler W B Jr. Efficient photochemical water splitting by a chemically modified n-TiO2. Science, 2002, 297(5590): 2243–2245
Yan H J, Yang J H, Ma G J, Wua G P, Zong X, Lei Z B, Shi J Y, Li C. Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalys. Journal of Catalysis, 2009, 266(2): 165–168
Maeda K, Saito N, Lu D, Inoue Y, Domen K. Photocatalytic properties of RuO2-loaded β-Ge3N4 for overall water splitting. Journal of Physical Chemistry C, 2007, 111(12): 4749–4755
Hara M, Hitoki G, Takata T, Kondo J N, Kobayashi H, Domen K. TaON and Ta3N5 as new visible light driven photocatalysts. Catalysis Today, 2003, 78(1–4): 555–560
Ohmori T, Mametsuka H, Suzuki E. Photocatalytic hydrogen evolution on InP suspension with inorganic sacricial reducing agent. International Journal of Hydrogen Energy, 2000, 25(10): 953–955
Kato H, Asakura K, Kudo A. Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. Journal of the American Chemical Society, 2003, 125(10): 3082–3089
Yoshioka K, Petrykin V, Kakihana M, Kato H, Kudo A. The relationship between photocatalytic activity and crystal structure in strontium tantalates. Journal of Catalysis, 2005, 232(1): 102–107
Domen K, Kudo A, Tanaka A, Onishi T. Overall photodecomposition of water on a layered niobiate catalyst. Catalysis Today, 1990, 8(1): 77–84
Wang D F, Zou Z G, Ye J H. A new spinel-type photocatalyst BaCr2O4 for H2 evolution under UV and visible light irradiation. Chemical Physics Letters, 2003, 373(1–2): 191–196
Zou Z G, Ye J H, Arakawa H. Role of R in Bi2RNbO7 (R = Y, Rare Earth): Effect on band structure and photocatalytic properties. Journal of Physical Chemistry, 2002, 106(3): 517–520
Maeda K, Teramura K, Lu D L, Takata T, Saito N, Inoue Y, Domen K. Photocatalyst releasing hydrogen from water. Nature, 2006, 440(7082): 295
Wang X C, Maeda K, Lee Y, Domen K. Enhancement of photocatalytic activity of (Zn1 + xGe)(N2Ox) for visible-light-driven overall water splitting by calcination under nitrogen. Chemical Physics Letters, 2008, 457(1–3): 134–136
Tsuji I, Kato H, Kobayashi H, Kudo A. Photocatalytic H2 evolution reaction from aqueous solutions over band structure-controlled (AgIn)xZn2(1 − x)S2 solid solution photocatalysts with visible-light response and their surface nanostructures. Journal of the American Chemical Society, 2004, 126(41): 13406–13413
Liu H, Yuan J, Shangguan WF, Teraoka Y. Visible-light-responding BiYWO6 solid solution for stoichiometric photocatalytic water splitting. Journal of Physical Chemistry C, 2008, 112(23): 8521–8523
Shangguan W F. Hydrogen evolution from water splitting on nanocomposite photocatalysts. Science and Technology of Advanced Materials, 2007, 8(1,2): 76–81
Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews, 2009, 38(1): 253–278
Agarwal R, Barrelet C J, Lieber C M. Lasing in single cadmium sulfide nanowire optical cavities. Nano Letters, 2005, 5(5): 917–920
Sathish M, Viswanathan B, Viswanath R P. Alternate synthetic strategy for the preparation of CdS nanoparticles and its exploitation for watersplitting. International Journal of Hydrogen Energy, 2006, 31(7): 891–898
Grzelczak M, Correa-Duarte M A, Salgueirino-Maceira V, Giersig M, Diaz R, Liz-Marzán L M. Photoluminescence quenching control in quantum dot-carbon nanotube composite colloids using a silicashell spacer. Advanced Materials (Deerfield Beach, Fla.), 2006, 18(4): 415–420
Liu J K, Luo C X, Yang X H, Zhang X Y. Ultrasonic-template method synthesis of CdS hollow nanoparticle chains. Materials Letters, 2009, 63(1): 124–126
Wang X L, Feng Z C, Fan D Y, Fan F T, Li C. Shape-controlled synthesis of CdS nanostructures via a solvothermal method. Crystal & Growth Design, 2010, 12(12): 5312–5318
Yang X H, Wu Q S, Li L, Ding Y P, Zhang G X. Controlled synthesis of the semiconductor CdS quasi-nanospheres, nanoshuttles, nanowires and nanotubes by the reverse micelle systems with different surfactants. Colloid and Surfaces A. Physicochemical and Engineering Aspects, 2005, 264(1–3): 172–178
Li C L, Yuan J, Han B Y, Shangguan W F. Synthesis and photochemical performance of morphology-controlled CdS photocatalysts for hydrogen evolution under visible light. International Journal of Hydrogen Energy, 2011, 36(7): 4271–4279
Bao N Z, Shen L M, Takata T, Domen K. Self-templated synthesis of nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible light. Chemistry of Materials, 2008, 20(1): 110–117
Yu J G, Zhang J, Jaronic M. Preparation and enhanced visible-light photocatalytic H2-production activity of CdS quantum dots-sensitized Zn1 − x CdxS solid solution. Green Chemistry, 2010, 12(9): 1611–1614
Bao N Z, Shen L M, Takata T, Domen K, Gupta A, Yanagisawa K, Grimes C A. Facile Cd-thiourea complex thermolysis synthesis of phase-controlled CdS nanocrystals for photocatalytic hydrogen production under visible light. Journal of Physical Chemistry C, 2007, 111(47): 17527–17534
Borgarello E, Kalyanasundaram K, Gratzel M. Visible light induced generation of hydrogen from H2S in CdS-dispersions, hole transfer catalysis by RuO2. Helvetica Chimica Acta, 1982, 65(1): 243–248
Yang T T, Chen W T, Hsu Y J, Wei K H, Lin T Y, Lin T W. Interfacial charge carrier dynamics in core shell Au-CdS nanocrystals. Journal of Physical Chemistry C, 2010, 114(26): 11414–11420
Yang J H, Yan H J, Wang X L, Wen F Y, Wang Z J, Fan D Y, Shi J Y, Li C. Roles of cocatalysts in Pt-PdS/CdS with exceptionally high quantum efficiency for photocatalytic hydrogen production. Journal of Catalysis, 2012, 290: 151–157
Shangguan W F. Hydrogen evolution from water splitting on Nanocomposite photocatalysts. Science and Technology of Advanced Materials, 2007, 8(1,2): 76–81
Luo M, Liu Y, Hu J C, Liu H, Li J L. One-pot synthesis of CdS and Ni-doped CdS hollow spheres with enhanced photocatalytic activity and durability. ACS Applied Materials & Interfaces, 2012, 4(3): 1813–1821
Tabata M, Maeda K, Ishihara T, Minegishi T, Takata T, Domen K. Photocatalytic hydrogen evolution from water using copper gallium sulfide under visible-light irradiation. Journal of Physical Chemistry C, 2010, 114(25): 11215–11220
Zong X, Han J F, Ma G J, Yan H J, Wu G P, Li C. Photocatalytic H2 evolution on CdS loaded with WS2 as cocatalyst under visible light irradiation. Journal of Physical Chemistry C, 2011, 115(24): 12202–12208
Zong X, Wu G P, Yan H J, Ma G J, Shi J Y, Wen F Y, Wang L, Li C. Photocatalytic H2 evolution on MoS2/CdS catalysts under visible light irradiation. Journal of Physical Chemistry C, 2010, 114(4): 1963–1968
Sayama K, Mukasa K, Abe R, Abe Y, Arakawa H. Stoichiometric water splitting into H2 and O2 using a mixture of two different photocatalysts and IO3 −/I− shuttle redox mediator under visible light irradiation. Chemical Communications (Cambridge), 2001, (23): 2416–2417
Kato H, Hori M, Konta R, Shimodaira Y, Kudo A. Construction of Z-scheme type heterogeneous photocatalysis systems for water splitting into H2 and O2 under visible light irradiation. Chemistry Letters, 2004, 33(10): 1348–1349
Tada H, Mitsui T, Kiyonaga T, Akita T, Tanaka K. All-solid-state Zscheme in CdS-Au-TiO2 three-component nanojunction system. Nature Materials, 2006, 5(10): 782–786
Shangguan W F, Yoshida A. Photocatalytic hydrogen evolution from water on nanocomposites incorporating cadmium sulfide into the interlayer. Journal of Physical Chemistry B, 2002, 106(47): 12227–12230
Sato T, Masaki K, Sato K, Fujishiro Y, Okuwaki A. Photocatalytic properties of layered hydrous titanium oxide/CdS-ZnS nanocomposites incorporating CdS-ZnS into the interlayer. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 1996, 67(4): 339–344
Sato T, Sato K, Fujishiro Y, Yoshioka T, Okuwaki A. Photochemical reduction of nitrate to ammonia using layered hydrous Titanate/Cadmium sulphide nanocomposites. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 1996, 67(4): 345–349
Shangguan WF, Yoshida A. Synthesis and photocatalytic properties of CdS-intercalated metal oxides. Solar Energy Materials and Solar Cells, 2001, 69(2): 189–194
Gao X F, Sun W T, Hu Z D, Ai G, Zhang Y L, Feng S, Li F, Peng L M. Hu Z-D, Ai G, Zhang Y-L, Feng S, Li F, Peng L-M. An efficient method to form heterojunction CdS/TiO2 photoelectrodes using highly ordered TiO2 nanotube array films. Journal of Physical Chemistry C, 2009, 113(47): 20481–20485
Barpuzary D, Khan Z, Vinothkumar N, De M, Qureshi M. Hierarchically grown urchinlike CdS@ZnO and CdS@Al2O3 heteroarrays for efficient visible-light-driven photocatalytic hydrogen generation. Journal of Physical Chemistry C, 2012, 116(1): 150–156
Wang L, Wei H W, Fan Y J, Gu X, Zhan J H. One-dimensional CdS/r-Fe2O3 and CdS/Fe3O4 heterostructures: epitaxial and nonepitaxial growth and photocatalytic activity. Journal of Physical Chemistry C, 2009, 113(32): 14119–14125
Li C L, Yuan J, Han B Y, Jiang L, Shangguan WF. TiO2 Nanotubes incorporated with CdS for photocatalytic hydrogen production from splitting water under visible light irradiation. International Journal of Hydrogen Energy, 2010, 35(13): 7073–7079
Xing C J, Zhang Y J, Yan W, Guo L J. Band structure-controlled solid solution of Cd1 − x ZnxS photocatalyst for hydrogen production by water splitting. International Journal of Hydrogen Energy, 2006, 31(14): 2018–2024
Kimi M, Yuliati L, Shamsuddin M. Photocatalytic hydrogen production under visible light over Cd0.1SnxZn09 − 2x S solid solution photocatalysts. International Journal of Hydrogen Energy, 2011, 36(16): 9453–9461
Ikeue K, Shiiba S, Machida M. Novel Visible-light-driven photocatalyst based on Mn-Cd-S for efficient H2 evolution. Chemistry of Materials, 2010, 22(3): 743–745
Xie S L, Lu X H, Zhai T, Gan J Y, Li W, Xu M, Yu M H, Zhang Y M, Tong Y X. Controllable synthesis of ZnxCd1 − x S@ZnO coreshell nanorods with enhanced photocatalytic activity. Langmuir, 2012, 28(28): 10558–10564
Zhang J, Yu J G, Jaroniec M, Gong J R. Noble metal-free reduced graphene oxide-ZnxCd1 − x S nanocomposite with enhanced solar photocatalytic H2-production performance. Nano Letters, 2012, 12(9): 4584–4589
Gao P, Liu J C, Lee S, Zhang T, Sun D D. High quality graphene oxide-CdS-Pt nanocomposites for efficient photocatalytic hydrogen evolution. Journal of Materials Chemistry, 2012, 22(5): 2292–2298
Lee H, Heo K, Maaroof A, Park Y, Noh S, Park J, Jian J, Lee C, Seong M J, Hong S. High-performance photoconductive channels based on (carbon nanotube)-(CdS nanowire) hybrid nanostructures. Small, 2012, 8(11): 1650–1656
Jia L, Wang D H, Huang Y X, Xu A W, Yu H Q. Highly durable Ndoped graphene/CdS nanocomposites with enhanced photocatalytic hydrogen evolution from water under visible light irradiation. Journal of Physical Chemistry C, 2011, 115(23): 11466–11473
