Hydrogen production by the newly isolated Clostridium beijerinckii RZF-1108
Tài liệu tham khảo
Abreu, 2010, Engineered heat treated methanogenic granules: a promising biotechnological approach for extreme thermophilic biohydrogen production, Bioresour. Technol., 101, 9577, 10.1016/j.biortech.2010.07.070
Beveridge, 2001, Use of the Gram stain in microbiology, Biotech. Histochem., 76, 111, 10.1080/bih.76.3.111.118
Bowles, 1985, Effects of butanol on Clostridium acetobutylicum, Appl. Environ. Microbiol., 50, 1165, 10.1128/AEM.50.5.1165-1170.1985
Boyd, 2010, [FeFe]-hydrogenase in Yellowstone National Park: evidence for dispersal limitation and phylogenetic niche conservatism, ISME J., 11, 1
Chen, 2001, Kinetics of hydrogen production with continuous anaerobic cultures utilizing sucrose as the limiting substrate, Appl. Microbiol. Biotechnol., 57, 56, 10.1007/s002530100747
Chong, 2009, Effects of pH, glucose and iron sulfate concentration on the yield of biohydrogen by Clostridium butyricum EB6, Int. J. Hydrogen Energy, 34, 8859, 10.1016/j.ijhydene.2009.08.061
Chu, 2011, Bioconversion of wheat stalk to hydrogen by dark fermentation: effect of different mixed microflora on hydrogen yield and cellulose solubilisation, Bioresour. Technol., 102, 3805, 10.1016/j.biortech.2010.11.092
Das, 2009, Advances in biohydrogen production processes: an approach towards commercialization, Int. J. Hydrogen Energy, 34, 7349, 10.1016/j.ijhydene.2008.12.013
Das, 2008, Advances in biological hydrogen production processes, Int. J. Hydrogen Energy, 33, 6046, 10.1016/j.ijhydene.2008.07.098
Ezeji, 2003, Production of acetone, butanol and ethanol by Clostridium beijerinckii BA101 and in situ recovery by gas stripping, World J. Microbiol. Biotechnol., 19, 595, 10.1023/A:1025103011923
Ferchichi, 2005, Influence of initial pH on hydrogen production from cheese whey, J. Biotechnol., 120, 402, 10.1016/j.jbiotec.2005.05.017
Hatch, 2008, Influence of reduced electron shuttling compounds on biological H2 production in the fermentative pure culture Clostridium beijerinckii, Curr. Microbiol., 56, 268, 10.1007/s00284-007-9073-9
Heyndrickx, 1986, Hydrogen gas production from continuous fermentation of glucose in a minimal medium with Clostridium butyricum LMG 1213tl, Syst. Appl. Microbiol., 8, 239, 10.1016/S0723-2020(86)80087-X
Hungate, 1969, A roll tube method for cultivation of strict anaerobes, Methods Microbiol., 3B, 117, 10.1016/S0580-9517(08)70503-8
Jo, 2010, Molecular characterization and homologous overexpression of [FeFe]-hydrogenase in Clostridium tyrobutyricum JM1, Int. J. Hydrogen Energy, 35, 1065, 10.1016/j.ijhydene.2009.11.102
Kim, 2008, Hydrogen production conditions from food waste by dark fermentation with Clostridium beijerinckii KCTC 1785, Biotechnol. Bioprocess Eng., 13, 499, 10.1007/s12257-008-0142-0
Lee, 2008, Continuous butanol production using suspended and immobilized Clostridium beijerinckii NCIMB 8052 with supplementary butyrate, Energy Fuels, 22, 3459, 10.1021/ef800076j
Li, 2007, Fermentative hydrogen production from wastewater and solid wastes by mixed cultures, Crit. Rev. Environ. Sci. Technol., 37, 1, 10.1080/10643380600729071
Li, 2008, Effects of pH value and substrate concentration on hydrogen production from the anaerobic fermentation of glucose, Int. J. Hydrogen Energy, 33, 7413, 10.1016/j.ijhydene.2008.09.048
Lin, 2004, Effects of carbonate and phosphate concentrations on hydrogen production using anaerobic sewage sludge microflora, Int. J. Hydrogen Energy, 29, 275, 10.1016/j.ijhydene.2003.07.002
Lin, 2008, Heavy metal effects on fermentative hydrogen production using natural mixed microflora, Int. J. Hydrogen Energy, 33, 587, 10.1016/j.ijhydene.2007.09.030
Lin, 2005, The yield and isotopic composition of radiolytic H2, a potential energy source for the deep subsurface biosphere, Geochim. Cosmochim Ac., 69, 893, 10.1016/j.gca.2004.07.032
Morimoto, 2005, Overexpression of a hydrogenase gene in Clostridium paraputricum to enhance hydrogen gas production, FEMS Microbiol. Let., 246, 229, 10.1016/j.femsle.2005.04.014
Pan, 2008, Fermentative hydrogen production by the newly isolated Clostridium beijerinckii Fanp3, Int. J. Hydrogen Energy, 33, 5383, 10.1016/j.ijhydene.2008.05.037
Ren, 2009, Bioconversion of lignocellulosic biomass to hydrogen: potential and challenges, Biotechnol. Adv., 27, 1051, 10.1016/j.biotechadv.2009.05.007
Ren, 2009, Composition of extracellular polymeric substances influences the autoaggregation capability of hydrogen-producing bacterium Ethanoligenens harbinense, Bioresour. Technol., 100, 5109, 10.1016/j.biortech.2009.05.021
Ren, 2007, Microbial community structure of ethanol type fermentation in bio-hydrogen production, Environ. Microbiol., 9, 1112, 10.1111/j.1462-2920.2006.01234.x
Wang, 2008, Effect of Fe2+ concentration on fermentative hydrogen production by mixed cultures, Int. J. Hydrogen Energy, 33, 1215, 10.1016/j.ijhydene.2007.12.044
Wang, 2008, Relationship among growth parameters for Clostridium butyricum, hydA gene expression, and biohydrogen production in a sucrose-supplemented batch reactor, Appl. Microbiol. Biotechnol., 78, 525, 10.1007/s00253-007-1317-x
Xing, 2006, Ethanoligenens harbinense gen nov., sp. nov., isolated from molasses wastewater, Int. J. Syst. Evol. Microbiol., 56, 755, 10.1099/ijs.0.63926-0
Xing, 2008, Genetic diversity of hydrogen-producing bacteria in an acidophilic ethanol-H2-coproducing system, analyzed using the [Fe]-hydrogenase gene, Appl. Environ. Microbiol., 74, 1232, 10.1128/AEM.01946-07
Xing, 2008, Continuous hydrogen production of auto-aggregative Ethanoligenens harbinense YUAN-3 under non-sterile condition, Int. J. Hydrogen Energy, 33, 1489, 10.1016/j.ijhydene.2007.09.038
Zhang, 2006, Biological hydrogen production by Clostridium acetobutylicum in an unsaturated flow reactor, Water Res., 40, 728, 10.1016/j.watres.2005.11.041
Zhao, 2010, Characterization and overexpression of a [FeFe]-hydrogenase gene of a novel hydrogen-producing bacterium Ethanoligenens harbinense, Int. J. Hydrogen Energy, 35, 9598, 10.1016/j.ijhydene.2010.06.098