Hydrogen isotope effects: A new path to high-energy aqueous rechargeable Li/Na-ion batteries
Tài liệu tham khảo
Shin, 2020, Opportunities and reality of aqueous rechargeable batteries, Adv. Energy Mater., 10, 10.1002/aenm.202001386
Goodenough, 2010, Challenges for rechargeable Li batteries, Chem. Mater., 22, 587, 10.1021/cm901452z
Xu, 2004, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries, Chem. Rev., 104, 4303, 10.1021/cr030203g
Wang, 2012, Recent progress in aqueous lithium-ion batteries, Adv. Energy Mater., 2, 830, 10.1002/aenm.201200065
Kim, 2014, Aqueous rechargeable Li and Na ion batteries, Chem. Rev., 114, 11788, 10.1021/cr500232y
Bin, 2018, The development in aqueous lithium-ion batteries, J. Energy Chem., 27, 1521, 10.1016/j.jechem.2018.06.004
Huang, 2019, Recent progress of rechargeable batteries using mild aqueous electrolytes, Small Methods, 3, 10.1002/smtd.201800272
Chao, 2020, Roadmap for advanced aqueous batteries: from design of materials to applications, Sci. Adv., 6, 10.1126/sciadv.aba4098
Goodenough, 2013, Evolution of strategies for modern rechargeable batteries, Acc. Chem. Res., 46, 1053, 10.1021/ar2002705
Schalenbach, 2016, Acidic or alkaline? Towards a new perspective on the efficiency of water electrolysis, J. Electrochem. Soc., 163, F3197, 10.1149/2.0271611jes
Luo, 2010, Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte, Nat. Chem., 2, 760, 10.1038/nchem.763
Suo, 2015, Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries, Science, 350, 938, 10.1126/science.aab1595
Alias, 2015, Advances of aqueous rechargeable lithium-ion battery: a review, J. Power Sources, 274, 237, 10.1016/j.jpowsour.2014.10.009
Byeon, 2018, Atomic-scale observation of LiFePO4 and LiCoO2 dissolution behavior in aqueous solutions, Adv. Funct. Mater., 28
Suo, 2016, Advanced high-voltage aqueous lithium-ion battery enabled by "water-in-bisalt" electrolyte, Angew. Chem. Int. Ed., 55, 7136, 10.1002/anie.201602397
Xie, 2020, Molecular crowding electrolytes for high-voltage aqueous batteries, Nat. Mater., 19, 1006, 10.1038/s41563-020-0667-y
Yang, 2017, 4.0 V aqueous Li-ion batteries, Joule, 1, 122, 10.1016/j.joule.2017.08.009
Zhou, 2022, An electric-field-reinforced hydrophobic cationic sieve lowers the concentration threshold of water-in-salt electrolytes, Adv. Mater., 34
Chou, 2022, Hydrogen isotope effects on aqueous electrolyte for electrochemical lithium-ion storage, Angew. Chem. Int. Ed., 61, 10.1002/anie.202203137
Dryer, 1997, pH-dependent redox couple: illustrating the nernst equation using cyclic voltammetry, J. Chem. Educ., 74, 1195, 10.1021/ed074p1195
Chen, 2019, Improving electrochemical stability and low-temperature performance with water/acetonitrile hybrid electrolytes, Adv. Energy Mater., 10
Shang, 2022, A universal strategy for high-voltage aqueous batteries via lone pair electrons as hydrogen bond-breaker, Energy Environ. Sci., 15, 2653, 10.1039/D2EE00417H
Xu, 2022, Perspective—electrolyte design for aqueous batteries: from ultra-high concentration to low concentration?, J. Electrochem. Soc., 169, 10.1149/1945-7111/ac5ba9
Yue, 2021, Aqueous interphase formed by CO2 brings electrolytes back to salt-in-water regime, Nat. Chem., 13, 1061, 10.1038/s41557-021-00787-y
Liu, 2020, Aqueous rechargeable sodium ion batteries: developments and prospects, Mater. Today Energy, 17
Bin, 2018, Progress in aqueous rechargeable sodium-ion batteries, Adv. Energy Mater., 8, 10.1002/aenm.201703008
Lee, 2019, Toward a low-cost high-voltage sodium aqueous rechargeable battery, Mater. Today, 29, 26, 10.1016/j.mattod.2019.02.004
Suo, 2017, Water-in-salt” electrolyte makes aqueous sodium-ion battery safe, green, and long-lasting, Adv. Energy Mater., 7, 10.1002/aenm.201701189
Kühnel, 2017, A high-voltage aqueous electrolyte for sodium-ion batteries, ACS Energy Lett., 2, 2005, 10.1021/acsenergylett.7b00623
Jiang, 2019, High-voltage aqueous Na-ion battery enabled by inert-cation-assisted water-in-salt electrolyte, Adv. Mater., 32
Xu, 2022, Aqueous electrolyte design for super-stable 2.5 V LiMn2O4 || Li4Ti5O12 pouch cells, Nat. Energy, 7, 186, 10.1038/s41560-021-00977-5
Soddy, 1923, The origins of the conception of isotopes, Sci. Mon., 17, 305
Soddy, 1913, Intra-atomic charge, Nature, 92, 399, 10.1038/092399c0
Vértes, 2011
Urey, 1932, A hydrogen isotope of mass 2, Phys. Rev. E, 39, 164, 10.1103/PhysRev.39.164
Chaplin, 2007, Water's hydrogen bond strength, 69
Zhang, 2019, Effect of pore size on the ion electrosorption and hydrogen/deuterium electrosorption using sodium chloride in H2O and D2O, J. Electrochem. Soc., 166, A4158, 10.1149/2.0571916jes
Manthiram, 2006, Chemical and structural instabilities of lithium ion battery cathodes, J. Power Sources, 159, 249, 10.1016/j.jpowsour.2006.04.028
Gu, 2011, First-principles study of H+ intercalation in layer-structured LiCoO2, J. Phys. Chem. C, 115, 12672, 10.1021/jp202846p
Choi, 2006, Proton insertion into oxide cathodes during chemical delithiation, Electrochem. Solid State Lett., 9, A241, 10.1149/1.2184495
Benedek, 2008, Free energy for protonation reaction in lithium-ion battery cathode materials, Chem. Mater., 20, 5485, 10.1021/cm703042r
Shearman, 1937, The solubilities of potassium chloride in deuterium water and in ordinary water from 0 to 180°, J. Am. Chem. Soc., 59, 185, 10.1021/ja01280a047
Eddy, 1940, The solubilities of certain inorganic compounds in ordinary water and in deuterium water, J. Phys. Chem., 44, 207, 10.1021/j150398a007
Brickwedde, 1946, Solubility of cadmium sulfate in H2O-D2O mixtures, J. Res. Natl. Bur. Stand., 36, 377, 10.6028/jres.036.018
Noonan, 1948, Solubility of salts in deuterium oxide, J. Am. Chem. Soc., 70, 2915, 10.1021/ja01189a026
Broadbank, 1968, The solubility of silver chloride in deuterium oxide solutions, J. Chem. Soc. A, 213, 10.1039/j19680000213
Sunier, 1976, The solubility of potassium chloride in ordinary and heavy water, J. Chem. Eng. Data, 21, 335, 10.1021/je60070a011
George, 2020, Kinetic isotope effect as a tool to investigate the oxygen reduction reaction on Pt-based electrocatalysts. Part I: high-loading Pt/C and Pt extended surface, ChemPhysChem, 21, 469, 10.1002/cphc.201901091
Malko, 2017, Kinetic isotope effect in the oxygen reduction reaction (ORR) over Fe-N/C catalysts under acidic and alkaline conditions, Electrochem. Commun., 83, 67, 10.1016/j.elecom.2017.09.004
Ghoneim, 1985, Oxygen reduction kinetics in deuterated phosphoric acid, J. Electrochem. Soc., 132, 1160, 10.1149/1.2114050
Yang, 2023, Inverse kinetic isotope effects in the oxygen reduction reaction at platinum single crystals, Nat. Chem., 15, 271, 10.1038/s41557-022-01084-y
Lopes, 2020, Past, present, and future of lead-acid batteries, Science, 369, 923, 10.1126/science.abd3352
Zhang, 2017, Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities, Nat. Commun., 8, 405, 10.1038/s41467-017-00467-x
Takano, 2016, Lithium-ion conduction in LiBH4 hydrated H2O and D2O, vol. 39, 2994