Hydrogen isotope effects: A new path to high-energy aqueous rechargeable Li/Na-ion batteries

eScience - Tập 3 - Trang 100121 - 2023
Xue-Ting Li1,2, Jia Chou1, Yu-Hui Zhu1,2, Wen-Peng Wang1, Sen Xin1,2, Yu-Guo Guo1,2
1CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, PR China
2University of Chinese Academy of Sciences, Beijing 100049, PR China

Tài liệu tham khảo

Shin, 2020, Opportunities and reality of aqueous rechargeable batteries, Adv. Energy Mater., 10, 10.1002/aenm.202001386 Goodenough, 2010, Challenges for rechargeable Li batteries, Chem. Mater., 22, 587, 10.1021/cm901452z Xu, 2004, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries, Chem. Rev., 104, 4303, 10.1021/cr030203g Wang, 2012, Recent progress in aqueous lithium-ion batteries, Adv. Energy Mater., 2, 830, 10.1002/aenm.201200065 Kim, 2014, Aqueous rechargeable Li and Na ion batteries, Chem. Rev., 114, 11788, 10.1021/cr500232y Bin, 2018, The development in aqueous lithium-ion batteries, J. Energy Chem., 27, 1521, 10.1016/j.jechem.2018.06.004 Huang, 2019, Recent progress of rechargeable batteries using mild aqueous electrolytes, Small Methods, 3, 10.1002/smtd.201800272 Chao, 2020, Roadmap for advanced aqueous batteries: from design of materials to applications, Sci. Adv., 6, 10.1126/sciadv.aba4098 Goodenough, 2013, Evolution of strategies for modern rechargeable batteries, Acc. Chem. Res., 46, 1053, 10.1021/ar2002705 Schalenbach, 2016, Acidic or alkaline? Towards a new perspective on the efficiency of water electrolysis, J. Electrochem. Soc., 163, F3197, 10.1149/2.0271611jes Luo, 2010, Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte, Nat. Chem., 2, 760, 10.1038/nchem.763 Suo, 2015, Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries, Science, 350, 938, 10.1126/science.aab1595 Alias, 2015, Advances of aqueous rechargeable lithium-ion battery: a review, J. Power Sources, 274, 237, 10.1016/j.jpowsour.2014.10.009 Byeon, 2018, Atomic-scale observation of LiFePO4 and LiCoO2 dissolution behavior in aqueous solutions, Adv. Funct. Mater., 28 Suo, 2016, Advanced high-voltage aqueous lithium-ion battery enabled by "water-in-bisalt" electrolyte, Angew. Chem. Int. Ed., 55, 7136, 10.1002/anie.201602397 Xie, 2020, Molecular crowding electrolytes for high-voltage aqueous batteries, Nat. Mater., 19, 1006, 10.1038/s41563-020-0667-y Yang, 2017, 4.0 V aqueous Li-ion batteries, Joule, 1, 122, 10.1016/j.joule.2017.08.009 Zhou, 2022, An electric-field-reinforced hydrophobic cationic sieve lowers the concentration threshold of water-in-salt electrolytes, Adv. Mater., 34 Chou, 2022, Hydrogen isotope effects on aqueous electrolyte for electrochemical lithium-ion storage, Angew. Chem. Int. Ed., 61, 10.1002/anie.202203137 Dryer, 1997, pH-dependent redox couple: illustrating the nernst equation using cyclic voltammetry, J. Chem. Educ., 74, 1195, 10.1021/ed074p1195 Chen, 2019, Improving electrochemical stability and low-temperature performance with water/acetonitrile hybrid electrolytes, Adv. Energy Mater., 10 Shang, 2022, A universal strategy for high-voltage aqueous batteries via lone pair electrons as hydrogen bond-breaker, Energy Environ. Sci., 15, 2653, 10.1039/D2EE00417H Xu, 2022, Perspective—electrolyte design for aqueous batteries: from ultra-high concentration to low concentration?, J. Electrochem. Soc., 169, 10.1149/1945-7111/ac5ba9 Yue, 2021, Aqueous interphase formed by CO2 brings electrolytes back to salt-in-water regime, Nat. Chem., 13, 1061, 10.1038/s41557-021-00787-y Liu, 2020, Aqueous rechargeable sodium ion batteries: developments and prospects, Mater. Today Energy, 17 Bin, 2018, Progress in aqueous rechargeable sodium-ion batteries, Adv. Energy Mater., 8, 10.1002/aenm.201703008 Lee, 2019, Toward a low-cost high-voltage sodium aqueous rechargeable battery, Mater. Today, 29, 26, 10.1016/j.mattod.2019.02.004 Suo, 2017, Water-in-salt” electrolyte makes aqueous sodium-ion battery safe, green, and long-lasting, Adv. Energy Mater., 7, 10.1002/aenm.201701189 Kühnel, 2017, A high-voltage aqueous electrolyte for sodium-ion batteries, ACS Energy Lett., 2, 2005, 10.1021/acsenergylett.7b00623 Jiang, 2019, High-voltage aqueous Na-ion battery enabled by inert-cation-assisted water-in-salt electrolyte, Adv. Mater., 32 Xu, 2022, Aqueous electrolyte design for super-stable 2.5 V LiMn2O4 || Li4Ti5O12 pouch cells, Nat. Energy, 7, 186, 10.1038/s41560-021-00977-5 Soddy, 1923, The origins of the conception of isotopes, Sci. Mon., 17, 305 Soddy, 1913, Intra-atomic charge, Nature, 92, 399, 10.1038/092399c0 Vértes, 2011 Urey, 1932, A hydrogen isotope of mass 2, Phys. Rev. E, 39, 164, 10.1103/PhysRev.39.164 Chaplin, 2007, Water's hydrogen bond strength, 69 Zhang, 2019, Effect of pore size on the ion electrosorption and hydrogen/deuterium electrosorption using sodium chloride in H2O and D2O, J. Electrochem. Soc., 166, A4158, 10.1149/2.0571916jes Manthiram, 2006, Chemical and structural instabilities of lithium ion battery cathodes, J. Power Sources, 159, 249, 10.1016/j.jpowsour.2006.04.028 Gu, 2011, First-principles study of H+ intercalation in layer-structured LiCoO2, J. Phys. Chem. C, 115, 12672, 10.1021/jp202846p Choi, 2006, Proton insertion into oxide cathodes during chemical delithiation, Electrochem. Solid State Lett., 9, A241, 10.1149/1.2184495 Benedek, 2008, Free energy for protonation reaction in lithium-ion battery cathode materials, Chem. Mater., 20, 5485, 10.1021/cm703042r Shearman, 1937, The solubilities of potassium chloride in deuterium water and in ordinary water from 0 to 180°, J. Am. Chem. Soc., 59, 185, 10.1021/ja01280a047 Eddy, 1940, The solubilities of certain inorganic compounds in ordinary water and in deuterium water, J. Phys. Chem., 44, 207, 10.1021/j150398a007 Brickwedde, 1946, Solubility of cadmium sulfate in H2O-D2O mixtures, J. Res. Natl. Bur. Stand., 36, 377, 10.6028/jres.036.018 Noonan, 1948, Solubility of salts in deuterium oxide, J. Am. Chem. Soc., 70, 2915, 10.1021/ja01189a026 Broadbank, 1968, The solubility of silver chloride in deuterium oxide solutions, J. Chem. Soc. A, 213, 10.1039/j19680000213 Sunier, 1976, The solubility of potassium chloride in ordinary and heavy water, J. Chem. Eng. Data, 21, 335, 10.1021/je60070a011 George, 2020, Kinetic isotope effect as a tool to investigate the oxygen reduction reaction on Pt-based electrocatalysts. Part I: high-loading Pt/C and Pt extended surface, ChemPhysChem, 21, 469, 10.1002/cphc.201901091 Malko, 2017, Kinetic isotope effect in the oxygen reduction reaction (ORR) over Fe-N/C catalysts under acidic and alkaline conditions, Electrochem. Commun., 83, 67, 10.1016/j.elecom.2017.09.004 Ghoneim, 1985, Oxygen reduction kinetics in deuterated phosphoric acid, J. Electrochem. Soc., 132, 1160, 10.1149/1.2114050 Yang, 2023, Inverse kinetic isotope effects in the oxygen reduction reaction at platinum single crystals, Nat. Chem., 15, 271, 10.1038/s41557-022-01084-y Lopes, 2020, Past, present, and future of lead-acid batteries, Science, 369, 923, 10.1126/science.abd3352 Zhang, 2017, Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities, Nat. Commun., 8, 405, 10.1038/s41467-017-00467-x Takano, 2016, Lithium-ion conduction in LiBH4 hydrated H2O and D2O, vol. 39, 2994