Hydrogen, helium and thermo-acoustic refrigerators
Tóm tắt
In this work the design and analysis of 1 kW thermo-acoustic refrigerators with hydrogen and helium for the temperature difference of 38 K is discussed. Helium is the best for thermoacoustic refrigerators compared to the other competent gases. But hydrogen is chosen since it is less expensive and better thermophysical properties compared to helium. The best parallel plates geometry with 15% blockage is chosen for the stack and heat exchangers. The effect of resonance frequency of hydrogen and helium varying from 400–600 Hz on the theoretical performance is discussed. The coefficient of performance and the power density of 1.65 and 40.3 kW/m3 for hydrogen, and 1.58 and 19.2 kW/m3 for helium is reported for the optimized designs, respectively. The theoretical results are compared with the DeltaEC software results, shows the cooling power and coefficient of performance of 590 W and 1.11 for hydrogen, and 687 W and 1.25 for helium, respectively.
Tài liệu tham khảo
Hofler, T. J. (1986). Thermoacoustic refrigerator design and Performance. Ph.D. dissertation, University of California, San Diego.
Tijani, M. E. H., Zeegers, J. C. H., & de Waele, A. T. A. M. (2002). Construction and performance of a thermoacoustic refrigerator. Cryogenics, 42, 59–66.
Prashantha, B. G., Govinde Gowda, M. S., Seetharamu, S., & Narasimham, G. S. V. L. (2017). Design construction and performance of 10 W thermoacoustic refrigerators. International Journal of Air-Conditioning and Refrigeration., 25(3), 1750023. https://doi.org/10.1142/S2010132517500237. 14 pages.
Prashantha, B. G., Narasimham, G. S. V. L., Seetharamu, S., & Hemadri, V. B. (2022). Theoretical evaluation of stack-based thermoacoustic refrigerators. International Journal of Air-Conditioning and Refrigeration, 30, 8. https://doi.org/10.1007/s44189-022-00008-2
Tijani, M. E. H. (2001). Loudspeaker-driven thermo-acoustic refrigeration. Ph.D. Thesis, Eindhoven University of Technology.
Wetzel, M., & Herman, C. (1997). Design optimization of thermoacoustic refrigerator. International Journal of Refrigeration, 20(1), 3–21.
Babaei, H., & Siddiqui, K. (2008). Design and optimization of thermoacoustic devices. Energy Conversion and Management., 49, 3585–3598.
Prashantha, B. G., Narasimham, G. S. V. L., Seetharamu, S., & Manjunatha, K. (2021). Effect of gas blockage on the theoretical performance of thermoacoustic refrigerators. International Journal of Air-Conditioning and Refrigeration., 29(3), 2150026. https://doi.org/10.1142/S2010132521500267. 16 pages.
Swift, G. W. (1988). Thermoacoustic engines. Journal of the Acoustical Society of America, 84(4), 1145–1180.
Prashantha, B. G., Swamy, D. R., Soargaon, B., & Nanjundeswaraswamy, T. S. (2020). Design optimization and analysis of thermoacoustic refrigerators. International Journal of Air-Conditioning and Refrigeration., 28(3), 2050020. https://doi.org/10.1142/S2010132520500200. 12 pages.
Prashantha, B. G., Govinde Gowda, M. S., Seetharamu, S., & Narasimham, G. S. V. L. (2013). Theoretical evaluation of loudspeaker for a 10-W cooling power thermoacoustic refrigerator. International Journal of Air-Conditioning and Refrigeration., 21(4), 1350027. https://doi.org/10.1142/S2010132513500272. 8 pages.
Tijani, M. E. H., Zeegers, J. C. H., & de Waele, A. T. A. M. (2002). Prandtl number and thermoacoustic refrigerators. Journal of the Acoustical Society of America, 112(1), 134–143.
Ward B, Clark J, Swift GW. Design environment for low-amplitude thermoacoustic energy conversion (DeltaEC software). Version 6.4b2.9 Los Alamos National Laboratory; 2008. Available at http://www.lanl.gov/thermoacoustics.
Poese, M. E., & Garrett, S. L. (2000). Performance measurements on a thermoacoustic refrigerator driven at high amplitudes. Journal of the Acoustical Society of America, 107(5), 2480–2486.
Swift, G. W. (2002). Thermoacoustics: A unifying perspective of some engines and refrigerators. Acoustical Society of America., 113, 5.
Wheatley, J. C., Hofler, T., Swift, G. W., & Migliori, A. (1985). Understanding some simple phenomena in thermoacoustics with applications to acoustical heat engines. American Journal of Physics, 53, 147–162.
Prashantha, B. G., Seetharamu, S., Narasimham, G. S. V. L., & Praveen Kumar, M. R. (2019). Effect of stack spacing on the performance of thermoacoustic refrigerators using helium and air as working substances. International Journal of Air-Conditioning and Refrigeration., 27(2), 1950016. https://doi.org/10.1142/S2010132519500160. 11 pages.
Prashantha, B. G., Govinde Gowda, M. S., Seetharamu, S., & Narasimham, G. S. V. L. (2016). Design analysis of thermoacoustic refrigerator using air and helium as working substances. International Journal of Thermal and Environmental Engineering., 13(2), 113–120. https://doi.org/10.5383/ijtee.13.02.006
Swift, G. W. (1997). Thermoacoustic engines and refrigerators. Encyclopedia Applied Phys., 21, 245–264.
Narasimham, G. . S. . V. . L., & Krishna Murthy, M. .V. (1997). Thermoacoustic Refrigeration: An Overview. Workshop on Cryocooler Technology-Emerging Trends, Applications and Curriculum Development. Central Cryogenic Facility, IISc Bengaluru.
Prashantha, B. G., Govinde Gowda, M. S., Seetharamu, S., & Narasimham, G. S. V. L. (2018). Design and analysis of acoustically-driven 50 W thermoacoustic refrigerators. Sādhanā, 43, 82. https://doi.org/10.1007/s12046-018-0860-8
Rott, N. (1969). Damped and thermally driven acoustic oscillations in wide and narrow tubes. Zeitschrift fur Angewandte Mathematik und Physik, 20, 230–243.
Rott, N. (1980). Thermoacoustics. Advances in Applied Mechanics, 20, 135–175.
Prashantha, B. G., Govinde Gowda, M. S., Seetharamu, S., & Narasimham, G. S. V. L. (2013). Design and analysis of thermoacoustic refrigerator. International Journal of Air-Conditioning and Refrigeration., 21(1), 1350001. https://doi.org/10.1142/S2010132513500016. 10 pages.
Prashantha, B. G., Govinde Gowda, M. S., Seetharamu, S., & Narasimham, G. S. V. L. (2017). Design and comparative analysis of thermoacoustic refrigerators. International Journal of Air-Conditioning and Refrigeration., 25(1), 1750002. https://doi.org/10.1142/S201013251750002X. 9 pages.
Prashantha, B. G., Govinde Gowda, M. S., Seetharamu, S., & Narasimham, G. S. V. L. (2015). Resonator optimization and studying the effect of drive ratio on the theoretical performance of a 10-W cooling power thermoacoustic refrigerator. International Journal of Air-Conditioning and Refrigeration., 23(3), 1550020. https://doi.org/10.1142/S2010132515500200. 12 pages.
Wakeland, R. S. (2000). Use of electrodynamic drivers in thermoacoustic refrigerators. Journal of the Acoustical Society of America, 107, 827–832.
Garrett, S. L., Adeff, J. A., & Hofler, T. J. (1993). Thermoacoustic refrigerator for space applications. Journal of Thermophysics and Heat Transfer, 7, 595–599.
Prashantha, B. G., Govinde Gowda, M. S., Seetharamu, S., & Narasimham, G. S. V. L. (2014). Design and optimization of a loudspeaker-driven 10 W cooling power thermoacoustic refrigerator. International Journal of Air-Conditioning and Refrigeration., 22(3), 1450015. https://doi.org/10.1142/S2010132514500151. 15 pages.
Prashantha, B. G., Seetharamu, S., Narasimham, G. S. V. L., & Praveen Kumar, M. R. (2019). Design and analysis of thermoacoustic refrigerators using air as working substance. International Journal of Air-Conditioning and Refrigeration., 27(1), 1950008. https://doi.org/10.1142/S2010132519500081. 14 pages.
Zolpakar, N. A., Mohd-Ghazali, N., & EI-Fawal, M. H. (2016). Performance analysis of the standing wave thermoacoustic refrigerator: A review. Renewable and Sustainable Energy Reviews., 54, 626–34. https://doi.org/10.1016/j.rser.2015.10.018
Prashantha, B. G., Govinde Gowda, M. S., Seetharamu, S., & Narasimham, G. S. V. L. (2013). Theoretical evaluation of 10-W cooling power thermoacoustic refrigerator. Heat Transfer-Asian Research., 43(7), 557–91. https://doi.org/10.1002/htj.21094
Tijani, M. E. H., Zeegers, J. C. H., & de Waele, A. T. A. M. (2002). A gas-spring system for optimizing loudspeakers in thermoacoustic refrigerators. Journal of Applied Physics, 92(4), 2159–2165.
Akhavanbazaz, M., Kamran Siddiqui, M. H., & Bhat, R. B. (2007). The impact of gas blockage on the performance of a thermoacoustic refrigerator. Experimental Thermal and Fluid Science., 32, 231–9. https://doi.org/10.1016/j.expthermflusci.2007.03.009
Tijani, M. E. H., Zeegers, J. C. H., & de Waele, A. T. A. M. (2002). The optimal stack spacing for thermoacoustic refrigeration. Journal of the Acoustical Society of America, 112(1), 128–133.
Prashantha, B. G., Seetharamu, S., Narasimham, G. S. V. L., & Manjunatha, K. (2023). Effect of gas spacing and resonance frequency on theoretical performance of thermoacoustic refrigerators. International Journal of Air-Conditioning and Refrigeration., 31, 11. https://doi.org/10.1007/s44189-023-00027-7
Kamil, M. Q., Yahya, S. G., & Azzawi, I. D. J. (2023). Design methodology of standing-wave thermoacoustic refrigerator: Theoretical analysis. International Journal of Air-Conditioning and Refrigeration., 31, 7. https://doi.org/10.1007/s44189-023-00023-x
