Hydrogen evolution reaction on VS2-NiS2 hybrid nanostructured electrocatalyst in acidic media: a binder-free electrode

Springer Science and Business Media LLC - Tập 19 - Trang 4299-4307 - 2022
Marziyeh Parishani1, Rasoul Malekfar1, Amir Bayat1, Hussein Gharibi2
1Department of Physics, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, Islamic Republic of Iran
2Department of Physical Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, Iran

Tóm tắt

The successful growth of an efficient binder-free VS2-NiS2 hybrid electrocatalyst on graphite rods is reported in the research via a facile one-pot hydrothermal method. According to the field emission scanning electron microscope images, the size of sheets and shape of structures are altered by increasing the concentration of NiS2, influencing the active sites and electrochemical results. The optimum VS2-NiS2 hybrid nanostructure catalyst offered a low overpotential (77 mV) at − 10 mA.cm−2, small Tafel slope (44.86 mV.dec−1), and negligible overpotential alteration after 1500 successive CV (cyclic voltammetry) cycles. The enhanced electrocatalytic activity of hybrid can be attributed to more exposure of active sites, adjustment of the binding energy of hydrogen to the surface, and improved charge transfer kinetics. This study offers a novel, cost-effective, binder-free, stable, and high-performance VS2-based nanostructured HER (hydrogen evolution reaction) electrocatalyst.

Tài liệu tham khảo

M.P. Browne, Z. Sofer, M. Pumera, Layered and two dimensional metal oxides for electrochemical energy conversion. Energy Environ. Sci. 12, 41–58 (2019). https://doi.org/10.1039/c8ee02495b H. Zhang, R. Lv, Defect engineering of two-dimensional materials for efficient electrocatalysis. J. Mater. 4, 95–107 (2018). https://doi.org/10.1016/j.jmat.2018.02.006 S.S. Kumar, V. Himabindu, Hydrogen production by PEM water electrolysis–a review. Mater. Sci. Energy Technol. 2, 442–454 (2019). https://doi.org/10.1016/j.mset.2019.03.002 J. Di, C. Yan, A.D. Handoko et al., Ultrathin two-dimensional materials for photo- and electrocatalytic hydrogen evolution. Mater. Today 21, 749–770 (2018). https://doi.org/10.1016/j.mattod.2018.01.034 S. Niaz, T. Manzoor, A.H. Pandith, Hydrogen storage: materials, methods and perspectives. Renew. Sustain. Energy Rev. 50, 457–469 (2015). https://doi.org/10.1016/j.rser.2015.05.011 S. Anantharaj, S.R. Ede, K. Sakthikumar et al., Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe Co, and Ni: a review. Acs Catal. 6, 8069–8097 (2016). https://doi.org/10.1021/acscatal.6b02479 C. H. Lee, S. U. Lee, Theoretical Basis of Electrocatalysis. In: Electrocatalysts for Fuel Cells and Hydrogen Evolution-Theory to Design. IntechOpen (2018). Y. Naimi, A. Antar, Hydrogen generation by water electrolysis. Adv. Hydrog. Gener. Technol. (2018). https://doi.org/10.5772/intechopen.76814 X. Zhao, X. Ma, J. Sun et al., Enhanced catalytic activities of surfactant-assisted exfoliated WS2 nanodots for hydrogen evolution. ACS Nano 10, 2159–2166 (2016). https://doi.org/10.1021/acsnano.5b06653 S.H. Yu, Z. Tang, Y. Shao et al., In Situ Hybridizing MoS2 Microflowers on VS2 Microflakes in a One-Pot CVD Process for Electrolytic Hydrogen Evolution Reaction. ACS Appl Energy Mater 2, 5799–5808 (2019). https://doi.org/10.1021/acsaem.9b00928 M. Velický, P.S. Toth, From two-dimensional materials to their heterostructures: an electrochemist’s perspective. Appl. Mater. Today 8, 68–103 (2017). https://doi.org/10.1016/j.apmt.2017.05.003 H. Jin, C. Guo, X. Liu et al., Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 118, 6337–6408 (2018). https://doi.org/10.1021/acs.chemrev.7b00689 R. Sun, Q. Wei, J. Sheng et al., Novel layer-by-layer stacked VS2 nanosheets with intercalation pseudocapacitance for high-rate sodium ion charge storage. Nano Energy 35, 396–404 (2017). https://doi.org/10.1016/j.nanoen.2017.03.036 J. Zhou, L. Wang, M. Yang et al., Hierarchical VS2 nanosheet assemblies: a universal host material for the reversible storage of alkali metal ions. Adv. Mater. 29, 1702061 (2017). https://doi.org/10.1002/adma.201702061 L. Cai, Q. Zhang, J.P. Mwizerwa et al., Highly crystalline layered VS2 nanosheets for all-solid-state lithium batteries with enhanced electrochemical performances. ACS Appl. Mater. Interfaces 10, 10053–10063 (2018). https://doi.org/10.1021/acsami.7b18798 D. Yu, Q. Pang, Y. Gao et al., Hierarchical flower-like VS2 nanosheets–a high rate-capacity and stable anode material for sodium-ion battery. Energy Storage Mater. 11, 1–7 (2018). https://doi.org/10.1016/j.ensm.2017.09.002 R. Sun, C. Pei, J. Sheng et al., High-rate and long-life VS2 cathodes for hybrid magnesium-based battery. Energy Storage Mater. 12, 61–68 (2018). https://doi.org/10.1016/j.ensm.2017.11.012 T. Jiao, Q. Yang, S. Wu et al., Binder-free hierarchical VS2 electrodes for high-performance aqueous Zn ion batteries towards commercial level mass loading. J. Mater. Chem. A 7, 16330–16338 (2019). https://doi.org/10.1039/c9ta04798k X. Zhang, Q. He, X. Xu et al., Insights into the storage mechanism of layered VS2 cathode in alkali metal-ion batteries. Adv. Energy Mater. (2020). https://doi.org/10.1002/aenm.201904118 J. Feng, X. Sun, C. Wu et al., Metallic few-layered VS2 ultrathin nanosheets: high two-dimensional conductivity for in-plane supercapacitors. J. Am. Chem. Soc. 133, 17832–17838 (2011). https://doi.org/10.1021/ja207176c Q. Ji, C. Li, J. Wang et al., Metallic vanadium disulfide nanosheets as a platform material for multifunctional electrode applications. Nano Lett. 17, 4908–4916 (2017). https://doi.org/10.1021/acs.nanolett.7b01914 E. Meyer, A. Bede, D. Mutukwa et al., Optimization, and analysis of carbon supported VS2 nanocomposites as potential electrodes in supercapacitors. J. Energy Storage 27, 101074 (2020). https://doi.org/10.1016/j.est.2019.101074 X. Yin, J. Cai, H. Feng et al., A novel VS2 nanosheet-based biosensor for rapid fluorescence detection of cytochrome c. New J. Chem. 39, 1892–1898 (2015). https://doi.org/10.1039/C4NJ01971G C. Du, A. Shang, M. Shang et al., Water-soluble VS2 quantum dots with unusual fluorescence for biosensing. Sens. Actuators B Chem. 255, 926–934 (2018). https://doi.org/10.1016/j.snb.2017.08.070 J. Yuan, J. Wu, W.J. Hardy et al., Facile synthesis of single crystal vanadium disulfide nanosheets by chemical vapor deposition for efficient hydrogen evolution reaction. Adv. Mater. 27, 5605–5609 (2015). https://doi.org/10.1002/adma.201502075 C. Du, D. Liang, M. Shang et al., In situ engineering MoS2 NDs/VS2 lamellar heterostructure for enhanced electrocatalytic hydrogen evolution. ACS Sustain. Chem. Eng. 6, 15471–15479 (2018). https://doi.org/10.1021/acssuschemeng.8b03929 H. Liang, H. Shi, D. Zhang et al., Solution growth of vertical VS2 nanoplate arrays for electrocatalytic hydrogen evolution. Chem. Mater. 28, 5587–5591 (2016). https://doi.org/10.1021/acs.chemmater.6b01963 Y. Qu, M. Shao, Y. Shao et al., Ultra-high electrocatalytic activity of VS2 nanoflowers for efficient hydrogen evolution reaction. J. Mater. Chem. A 5, 15080–15086 (2017). https://doi.org/10.1039/c7ta03172f J. Zhang, C. Zhang, Z. Wang et al., Synergistic interlayer and defect engineering in VS2 nanosheets toward efficient electrocatalytic hydrogen evolution reaction. Small 14, 1703098 (2018). https://doi.org/10.1002/smll.201703098 J.K. Das, A.K. Samantara, A.K. Nayak et al., VS2: an efficient catalyst for an electrochemical hydrogen evolution reaction in an acidic medium. Dalt. Trans. 47, 13792–13799 (2018). https://doi.org/10.1039/C8DT02547A W. Zhang, X. Chen, J. Zhang et al., Exposure of active edge structure for electrochemical H2 evolution from VS2/MWCNTs hybrid catalysts. Int. J. Hydrogen Energy 43, 22949–22954 (2018). https://doi.org/10.1016/j.ijhydene.2018.10.168 W. He, X. Zheng, J. Peng et al., Mo-dopant-strengthened basal-plane activity in VS2 for accelerating hydrogen evolution reaction. Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2020.125227 J. Zhu, L. Cai, X. Yin et al., Enhanced electrocatalytic hydrogen evolution activity in single-atom Pt-decorated VS2 nanosheets. ACS Nano 14, 5600–5608 (2020). https://doi.org/10.1021/acsnano.9b10048 G.M. Kumar, P. Ilanchezhiyan, H.D. Cho et al., Ultrathin VS2 nanodiscs for highly stable electro catalytic hydrogen evolution reaction. Int. J. Energy Res. 44, 811–820 (2020). https://doi.org/10.1002/er.4892 T. An, Y. Wang, J. Tang et al., Interlaced NiS2–MoS2 nanoflake-nanowires as efficient hydrogen evolution electrocatalysts in basic solutions. J. Mater. Chem. A 4, 13439–13443 (2016). https://doi.org/10.1039/C6TA05022K G. Zhou, Y. Chen, H. Dong et al., Ultrafine monodisperse NiS/NiS2 heteronanoparticles in situ grown on N-doped graphene nanosheets with enhanced electrocatalytic activity for hydrogen evolution reaction. Int. J. Hydrogen Energy 44, 26338–26346 (2019). https://doi.org/10.1016/j.ijhydene.2019.08.127 P. Kuang, M. He, B. Zhu et al., 0D/2D NiS2/V-MXene composite for electrocatalytic H2 evolution. J. Catal. 375, 8–20 (2019). https://doi.org/10.1016/j.jcat.2019.05.019 J. Wang, Z. Liu, C. Zhan et al., 3D hierarchical NiS2/MoS2 nanostructures on CFP with enhanced electrocatalytic activity for hydrogen evolution reaction. J. Mater. Sci. Technol. 39, 155–160 (2020). https://doi.org/10.1016/j.jmst.2019.05.037 H. Li, J. Zou, S. Xie et al., WSe2 nanofilms grown on graphite as efficient electrodes for hydrogen evolution reactions. J. Alloys Compd. 725, 884–890 (2017). https://doi.org/10.1016/j.jallcom.2017.05.063 X. Guo, J. Ji, Q. Jiang et al., Few-layered trigonal WS2 nanosheet-coated graphite foam as an efficient free-standing electrode for a hydrogen evolution reaction. ACS Appl. Mater. Interfaces 9, 30591–30598 (2017). https://doi.org/10.1021/acsami.7b06613 A. Jiang, B. Zhang, Z. Li et al., Vanadium-doped WS2 nanosheets grown on carbon cloth as a highly efficient electrocatalyst for the hydrogen evolution reaction. Chem. Asian J. 13, 1438–1446 (2018). https://doi.org/10.1002/asia.201800003 X. Mao, J. Zou, D. Li et al., MoSe2/graphite composite with excellent hydrogen evolution reaction performance fabricated by rapid selenization method. Appl. Surf. Sci. 471, 142–148 (2019). https://doi.org/10.1016/j.apsusc.2018.11.189 B. Pandit, S.S. Karade, B.R. Sankapal, Hexagonal VS2 anchored MWCNTs: first approach to design flexible solid-state symmetric supercapacitor device. ACS Appl. Mater. Interfaces 9, 44880–44891 (2017). https://doi.org/10.1021/acsami.7b13908 M.N. Rantho, M.J. Madito, F.O. Ochai-Ejeh, N. Manyala, Asymmetric supercapacitor based on vanadium disulfide nanosheets as a cathode and carbonized iron cations adsorbed onto polyaniline as an anode. Electrochim. Acta 260, 11–23 (2018). https://doi.org/10.1016/j.electacta.2017.11.074 T. Tian, L. Huang, L. Ai, J. Jiang, Surface anion-rich NiS 2 hollow microspheres derived from metal–organic frameworks as a robust electrocatalyst for the hydrogen evolution reaction. J. Mater. Chem. A 5, 20985–20992 (2017). https://doi.org/10.1039/C7TA06671F T. Suzuki, K. Uchinokura, T. Sekine, E. Matsuura, Raman scattering of NiS2. Solid State Commun. 23, 847–852 (1977). https://doi.org/10.1016/0038-1098(77)90967-X M. Carmo, D.L. Fritz, J. Mergel, D. Stolten, A comprehensive review on PEM water electrolysis. Int. J. Hydrogen Energy 38, 4901–4934 (2013). https://doi.org/10.1016/j.ijhydene.2013.01.151 T. Guo, Y. Song, Z. Sun et al., Bio-templated formation of defect-abundant VS2 as a bifunctional material toward high-performance hydrogen evolution reactions and lithium− sulfur batteries. J. Energy Chem. 42, 34–42 (2020). https://doi.org/10.1016/j.jechem.2019.06.007 K. Karthick, T.K. Bijoy, A. Sivakumaran et al., Enhancing hydrogen evolution reaction activities of 2H-phase VS2 layers with palladium nanoparticles. Inorg. Chem. 59, 10197–10207 (2020). https://doi.org/10.1021/acs.inorgchem.0c01339