Hydrogen Storage Performance of C14 Type Ti0.24V0.17Zr0.17Mn0.17Co0.17Fe0.08 High Entropy Intermetallics

Abhishek Kumar1, Thakur Prasad Yadav2, M. A. Shaz3, N. K. Mukhopadhyay4
1Banaras Hindu University
2Hydrogen Energy Centre, Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
3Hydrogen Energy Centre, Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, India
4Department of Metallurgical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Cantor B, Chang ITH, Knight P, Vincent AJB (2004) Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng 375–377:213–218. https://doi.org/10.1016/j.msea.2003.10.257

Cardoso KR, Roche V Jr, AMJ, Antiqueira FJ, Zepon G, Champion Y, (2021) Hydrogen storage in MgAlTiFeNi high entropy alloy. J Alloys Comp 858:158357. https://doi.org/10.1016/j.jallcom.2020.158357

Chen J, Li Z, Huang H, Lv Y, Liu B, Li Y, Wu Y, Yuan J, Wang Y (2022) Superior cycle life of TiZrFeMnCrV high entropy alloy for hydrogen storage. Scripta Mater 212:114548. https://doi.org/10.1016/j.scriptamat.2022.114548

Dornheim M (2011) Thermodynamics of metal hydrides: tailoring reaction enthalpies of hydrogen storage materials. Thermod Inter Stu Solids, Liquid Gases. https://doi.org/10.5772/21662

Edalati P, Floriano R, Mohammadi A, Li Y, Zepon G, Li HW, Edalati K (2020) Reversible room temperature hydrogen storage in high-entropy alloy TiZrCrMnFeNi. Scripta Mater 178:387–390. https://doi.org/10.1016/j.scriptamat.2019.12.009

Floriano R, Zepon G, Edalati K, Fontana GLBG, Mohammadi A, Ma Z, Li HW, Contieri RJ (2021) Hydrogen storage properties of new A3B2-type TiZrNbCrFe high-entropy alloy. Int J Hydrogen Energy 46(46):23757–23766. https://doi.org/10.1016/j.ijhydene.2021.04.181

Herbst JF (2002) On extending Miedema’s model to predict hydrogen content in binary and ternary hydrides. J Alloys Comp 337:99–107. https://doi.org/10.1016/S0925-8388(01)01939-9

Kao YF, Chen SK, Sheu JH, Lin JT, Lin WE, Yeh JW, Lin SJ, Liou TH, Wang CW (2010) Hydrogen storage properties of multi-principal-componentCoFeMnTixVyZrz alloys. Int J Hydrogen Energy 35:9046–9059. https://doi.org/10.1016/j.ijhydene.2010.06.012

Kumar A, Yadav TP, Mukhopadhyay NK (2022) Notable hydrogen storage in Ti–Zr–V–Cr–Ni high entropy alloy. Int J Hydrogen Energy 47:22893–22900. https://doi.org/10.1016/j.ijhydene.2022.05.107

Kunce I, Polanski M, Bystrzycki J (2013) Structure and hydrogen storage properties of a high entropy ZrTiVCrFeNi alloy synthesized using laser engineered net shaping (LENS). Int J Hydrogen Energy 38:12180–12189. https://doi.org/10.1016/j.ijhydene.2013.05.071

Kunce I, Polański M, Czujko T (2017) Microstructures and hydrogen storage properties of LaNiFeVMn alloys. Int J Hydrogen Energy 42:27154–27164. https://doi.org/10.1016/j.ijhydene.2017.09.039

Lai Q, Paskevicius M, Sheppard DA, Buckley CE, Thornton AW, Hill MR, Gu Q, Mao J, Huang Z, Liu HK, Guo Z, Banerjee A, Chakraborty S, Ahuja R, Aguey-Zinsou KF (2015) Hydrogen storage materials for mobile and stationary applications: current state of the art. Chemsuschem 8(2789–2825):2015. https://doi.org/10.1002/cssc.201500231

Liu J, Xu J, Sleiman S, Chen X, Zhu S, Cheng H, Huot J (2021) Microstructure and hydrogen storage properties of Ti-V-Cr based BCC-type high entropy alloys. Int J Hydrogen Energy 46:28709–28718. https://doi.org/10.1016/j.ijhydene.2021.06.137

Marco MOD, Li Y, Li HW, Edalati K, Floriano R (2020) Mechanical synthesis and hydrogen storage characterization of MgVCr and MgVTiCrFe high-entropy alloy. Adv Eng Mater 22:1901079. https://doi.org/10.1002/adem.201901079

Marques F, Balcerzak M, Winkelmann F, Zepon G, Felderhoff M (2021) Review and outlook on high-entropy alloys for hydrogen storage. Royal Soc Chem 14:5191–5227. https://doi.org/10.1039/D1EE01543E

Mishra SS, Mukhopadhyay S, Yadav TP, Mukhopadhyay NK, Srivastava ON (2019) Synthesis and characterization of hexanary Ti–Zr–V–Cr–Ni–Fe high-entropy Laves phase. J Mater Res 34(5):807–818. https://doi.org/10.1557/jmr.2018.502

Mishra SS, Yadav TP, Srivastava ON, Mukhopadhyay NK, Biswas K (2020) Formation and stability of C14 type Laves phase in multi component high-entropy alloys. J Alloys and Comp 832:153764. https://doi.org/10.1016/j.jallcom.2020.153764

Montero J, Ek G, Sahlberg M, Zlotea C (2021) Improving the hydrogen cycling properties by Mg addition in Ti-V-Zr-Nb refractory high entropy alloy. Scripta Mater 194:113699. https://doi.org/10.1016/j.scriptamat.2020.113699

Murty BS, Yeh JW, Ranganathan S, Bhattacharjee PP (2019) High-Entropy Alloys, 2nd edn. Elsevier

Ranganathan S (2003) Alloyed pleasures: Multimetallic cocktails. Current Sci 85:1404–1406

Sahlberg M, Karlsson D, Zlotea C, Jansson U (2016) Superior hydrogen storage in high entropy alloys. Sci Rep. https://doi.org/10.1038/srep36770

Sarac B, Zadorozhnyy V, Berdonosova E, Lvanov YP, Klyamkin S, Gumrukcu S, Sarac AS, Korol A, Semenov D, Zadorozhnyy M, Sharma A, Greer AL, Eckert J (2020) Hydrogen storage performance of the multi-principal-component CoFeMnTiVZr alloy in electrochemical and gas-solid reactions. RSC Adv 10:24613–24623. https://doi.org/10.1039/D0RA04089D

Sleiman S, Moussa M, Huot J (2021) Microstructure and hydrogen storage properties of the multiphase Ti0.3V0.3Mn0.2Fe0.1Ni0.1 Alloy. Reactions 3:287–300. https://doi.org/10.3390/reactions2030018

Tkacz M (2002) Thermodynamic properties of iron hydride. J Alloys Comp 330–332:25–28. https://doi.org/10.1016/S0925-8388(01)01487-6

Tsai MH, Yeh JW (2014) High-entropy alloys: a critical review. Mater Res Letters 2(3):107–123. https://doi.org/10.1080/21663831.2014.912690

Yadav TP, Mukhopadhyay S, Mishra SS, Mukhopadhyay NK, Srivastava ON (2017) Synthesis of a single phase of high-entropy Laves intermetallics in the Ti–Zr–V–Cr–Ni equiatomic alloy. Philos Mag Lett 97(12):494–503. https://doi.org/10.1080/09500839.2017.1418539

Yadav TP, Kumar A, Verma SK, Mukhopadhyay NK (2022) High-entropy alloys for solid hydrogen storage: potentials and prospects. Transact Indian Nat Acad Eng 7:147–156. https://doi.org/10.1007/s41403-021-00316-w

Yeh JW, Chen SK, Gan JY, Lin SJ, Chin TS, Shun TT, Tsau CH, Chou SY (2004a) Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements. Metallurgical and Mater Transact A 35:2533–2536. https://doi.org/10.1007/s11661-006-0234-4

Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS, Shun TT, Tsau CH, Chang SY (2004b) Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials. Z Phys Chem 117:89–112. https://doi.org/10.1002/adem.200300567

Zepon G, Leiva DR, Strozi RB, Bedoch A, Figueroa SJA, Ishikawa TT, Botta WJ (2018) Hydrogen-induced phase transition of MgZrTiFe0.5Co0.5Ni0.5 high entropy alloy. Int J Hyd Energy 43:1702–1708. https://doi.org/10.1016/j.ijhydene.2017.11.106

Zhou P, Cao Z, Xiao X, Jiang Z, Zhan L, Li Z, Jiang L, Chen L (2022) Study on low-vanadium TiZrMnCrV based alloys for high-density hydrogen storage. Int J Hydrogen Energy 47:710–1722. https://doi.org/10.1016/j.ijhydene.2021.10.106

Züttel A, Remhof A, Borgschulte A, Friedrichs O (2010) Hydrogen: the future energy carrier. Phil Trans R Soc A 368:3329–3342. https://doi.org/10.1098/rsta.2010.0113