Hydrodynamic equations for an electron gas in graphene
Tóm tắt
Từ khóa
Tài liệu tham khảo
Žutić I, Fabian J, Das Sarma S. Spintronics: fundamentals and applications. Rev Mod Phys. 2002;76:323-410.
Kane EO. The k⋅p method. In: Willardson RK, Beer AC, editors. Physics of III-V compounds, semiconductors and semimetals. vol. 1. Chapter 3. New York: Academic Press; 1966.
Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK. The electronic properties of graphene. Rev Mod Phys. 2009;81:109-62.
Barletti L, Méhats F. Quantum drift-diffusion modeling of spin transport in nanostructures. J Math Phys. 2010;51:053304.
Barletti L, Frosali G. Diffusive limit of the two-band k⋅p model for semiconductors. J Stat Phys. 2010;139:280-306.
Possanner S, Negulescu C. Diffusion limit of a generalized matrix Boltzmann equation for spin-polarized transport. Kinet Relat Models. 2011;4:1159-91.
Barletti L. Hydrodynamic equations for electrons in graphene obtained from the maximum entropy principle. J Math Phys. 2014;55:083303.
Morandi O, Barletti L. Particle dynamics in graphene: collimated beam limit. J Comput Theor Transp. 2014;43:1-15.
Barletti L, Frosali G, Morandi O. Kinetic and hydrodynamic models for multi-band quantum transport in crystals. In: Ehrhardt M, Koprucki T, editors. Multi-band effective mass approximations: advanced mathematical models and numerical techniques. Berlin: Springer; 2014.
Barletti L, Borgioli G, Frosali G. Semiclassical hydrodynamics of a quantum Kane model for semiconductors. Tr Inst Mat. 2014;11:11-29.
Degond P, Ringhofer C. Quantum moment hydrodynamics and the entropy principle. J Stat Phys. 2003;112:587-628.
Trovato M, Reggiani L. Quantum maximum entropy principle for a system of identical particles. Phys Rev E. 2010;81:021119.
Camiola VD, Romano V. Hydrodynamical model for charge transport in graphene. J Stat Phys. 2014;157:1114-37.
Zachos CK, Fairlie DB, Curtright TL, editors. Quantum mechanics in phase space: an overview with selected papers. Hackensack: World Scientific Publishing; 2005.
Barletti L. A mathematical introduction to the Wigner formulation of quantum mechanics. Boll Unione Mat Ital, B. 2003;6B(3):693-716.
Katsnelson MI, Novoselov KS, Geim AK. Chiral tunnelling and the Klein paradox in graphene. Nat Phys. 2006;2(9):620-5.
Cheianov VV, Fal’ko V, Altshuler BL. The focusing of electron flow and a Veselago lens in graphene. Science. 2007;315:1252-5.
Barletti L, Ben Abdallah N. Quantum transport in crystals: effective-mass theorem and K⋅P Hamiltonians. Commun Math Phys. 2011;307:567-607.
Deretzis I, La Magna A. Origin and impact of sublattice symmetry breaking in nitrogen-doped graphene. Phys Rev B. 2014;89:115408.
Morandi O. Wigner-function formalism applied to the Zener band transition in a semiconductor. Phys Rev B. 2009;80:02430.
Jüngel A, Krause S, Pietra P. Diffusive semiconductor moment equations using Fermi-Dirac statistics. Z Angew Math Phys. 2011;62:623-39.
Barletti L, Cintolesi C. Derivation of isothermal quantum fluid equations with Fermi-Dirac and Bose-Einstein statistics. J Stat Phys. 2012;148:353-86.