Turbulence Thủy động học: Hiệu ứng Quét và Giả thuyết Taylor thông qua Hàm Tương quan

Springer Science and Business Media LLC - Tập 5 - Trang 649-662 - 2020
Mahendra K. Verma1, Abhishek Kumar2, Akanksha Gupta1
1Department of Physics, Indian Institute of Technology Kanpur, Kanpur, India
2Centre for Fluid and Complex Systems, Coventry University, Coventry, UK

Tóm tắt

Chúng tôi chứng minh hiệu ứng quét trong dòng chảy hỗn loạn bằng cách sử dụng mô phỏng số của dòng chảy thủy động học mà không có vận tốc trung bình. Hàm tương quan vận tốc, $$C(\mathbf{k},\tau )$$, giảm theo thời gian do độ nhớt cuộn. Thêm vào đó, $$C(\mathbf{k},\tau )$$ thể hiện các dao động do hiệu ứng quét từ "trường vận tốc trung bình ngẫu nhiên" $${ \tilde{\mathbf{U}}}_0$$. Chúng tôi cũng thực hiện mô phỏng số với vận tốc trung bình $$\mathbf{U}_0= 10\hat{z}$$ (gấp 10 lần vận tốc rms) đối với trường hợp mà $$C(\mathbf{k},\tau )$$ thể hiện các dao động tắt dần với tần số $$|\mathbf{U}_0| k$$ và thang thời gian giảm tương ứng với trường hợp $$\mathbf{U}_0=0$$. Đối với $$\mathbf{U}_0=10\hat{z}$$, pha của $$C(\mathbf{k},\tau )$$ cho thấy hiệu ứng quét, nhưng bị che khuất bởi các dao động gây ra bởi $$\mathbf{U}_0$$. Chúng tôi cũng chứng minh rằng đối với $$\mathbf{U}_0=0$$ và $$10\hat{z}$$, phổ tần số của các trường vận tốc đo được bằng các đầu dò trong không gian thực lần lượt là $$f^{-2}$$ và $$f^{-5/3}$$; các phổ này liên quan đến tương quan không gian-thời gian Lagrangian và Eulerian tương ứng.

Từ khóa

#turbulence #hydrodynamic #sweeping effect #Taylor's hypothesis #correlation function

Tài liệu tham khảo

Belinicher VI, L’vov VS (1987) A scale invariant theory of fully developed hydrodynamic turbulence. JETP 66:303–313 Carati D, Ghosal S, Moin P (1995) On the representation of backscatter in dynamic localisation models. Phys Fluids 7(3):606–616 Chatterjee AG, Verma MK, Kumar A, Samtaney R, Hadri B, Khurram R (2017) Scaling of a Fast Fourier Transform and a pseudo-spectral fluid solver up to 196,608 cores. J Parallel Distrib Comput 113:77–91 Davidson PA (2015) Turbulence, 2nd edn. Oxford University Press, Oxford De Dominicis C, Martin PC (1979) Energy spectra of certain randomly-stirred fluids. Phys Rev A 19(1):419 Drivas TD, Johnson PL, Cristian C, Wilczek M (2017) Large-scale sweeping of small-scale eddies in turbulence: a filtering approach. Phys Rev Fluids 10:104603 Frisch U (1995) Turbulence. Cambridge University Press, Cambridge He X, Tong P (2011) Kraichnan’s random sweeping hypothesis in homogeneous turbulent convection. Phys Rev E 83:037302 He X, He G, Tong P (2010) Small-scale turbulent fluctuations beyond Taylor’s frozen-flow hypothesis. Phys Rev E 81(6):065303(R) Kiyani K, McComb WD (2004) Time-ordered fluctuation–dissipation relation for incompressible isotropic turbulence. Phys Rev E 70:066303 Kolmogorov AN (1941) Dissipation of energy in locally isotropic turbulence. Dokl Acad Nauk SSSR 32(1):16–18 Kolmogorov AN (1941) The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl Acad Nauk SSSR 30(4):301–305 Kraichnan RH (1959) The structure of isotropic turbulence at very high Reynolds numbers. J Fluid Mech 5:497–543 Kraichnan RH (1964) Kolmogorov’s hypotheses and Eulerian turbulence theory. Phys Fluids 7(11):1723 Kraichnan RH (1965) Lagrangian-history closure approximation for turbulence. Phys Fluids 8(4):575–598 Kumar A, Verma MK (2018) Applicability of Taylor’s hypothesis in thermally driven turbulence. R Soc Open Sci 5:172152–173015 Landau LD, Lifshitz EM (1987) Fluid mechanics. Butterworth–Heinemann, Oxford Lesieur M (2012) Turbulence in fluids, 4th edn. Springer, Dordrecht Leslie DC (1973) Developments in the theory of turbulence. Clarendon Press, Oxford Matthaeus WH, Goldstein ML (1982) Measurement of the rugged invariants of magnetohydrodynamic turbulence in the solar wind. J Geophys Res 87:6011–6028 McComb WD (1990) The physics of fluid turbulence. Clarendon Press, Oxford McComb WD (2014) Homogeneous, isotropic turbulence: phenomenology, renormalisation and statistical closures. Oxford University Press, Oxford Novikov EA (1965) Functionals and the random force method in turbulence. JETP 20:1290 Pope SB (2000) Turbulent flows. Cambridge University Press, Cambridge Sanada T, Shanmugasundaram V (1992) Random sweeping effect in isotropic numerical turbulence. Phys Fluids A 4(6):1245 Taylor GI (1938) The spectrum of turbulence. Proc R Soc A 164(9):476–490 Tennekes H, Lumley JL (1972) A first course in turbulence. MIT Press, Cambridge Verma MK (1999) Mean magnetic field renormalisation and Kolmogorov’s energy spectrum in magnetohydrodynamic turbulence. Phys Plasmas 6(5):1455–1460 Verma MK (2000) Intermittency exponents and energy spectrum of the Burgers and KPZ equations with correlated noise. Phys A 8:359–388 Verma MK (2001) Field theoretic calculation of renormalised-viscosity, renormalised-resistivity, and energy fluxes of magnetohydrodynamic turbulence. Phys Plasmas 64:26305 Verma MK (2004) Statistical theory of magnetohydrodynamic turbulence: recent results. Phys Rep 401(5):229–380 Verma MK (2018) Physics of buoyant flows: from instabilities to turbulence. World Scientific, Singapore Verma MK (2019) Energy transfers in fluid flows: multiscale and spectral perspectives. Cambridge University Press, Cambridge Verma MK, Chatterjee A, Reddy KS, Yadav RK, Paul S, Chandra M, Samtaney R (2013) Benchmarking and scaling studies of pseudospectral code Tarang for turbulence simulations. Pramana J Phys 81:617–629 Wilczek M, Narita Y (2012) Wave-number-frequency spectrum for turbulence from a random sweeping hypothesis with mean flow. Phys Rev E 86(6):066308 Yakhot V, Orszag SA (1986) Renormalization group analysis of turbulence. I. Basic Theory J Sci Comput 1(1):3–51 Zhou Y (2010) Renormalization group theory for fluid and plasma turbulence. Phys Rep 488(1):1–49