Hydriding of titanium: Recent trends and perspectives in advanced characterization and multiscale modeling
Tài liệu tham khảo
Vaché, 2021, Modeling the oxidation kinetics of titanium alloys: Review, method and application to Ti-64 and Ti-6242s alloys, Corros. Sci., 178, 10.1016/j.corsci.2020.109041
Zhang, 2019, A Review on Biomedical Titanium Alloys: Recent Progress and Prospect, Adv. Eng. Mater., 21, 1801215, 10.1002/adem.201801215
Zhang, 2019, Additive manufacturing of ultrafine-grained high-strength titanium alloys, Nature, 576, 91, 10.1038/s41586-019-1783-1
Bahl, 2020, Comprehensive review on alloy design, processing, and performance of β Titanium alloys as biomedical materials, Int. Mater. Rev., 1
Banerjee, 2013, Perspectives on titanium science and technology, Acta Mater., 61, 844, 10.1016/j.actamat.2012.10.043
Nagesha, 2020, A review on weldability of additive manufactured titanium alloys, Mater. Today:. Proc.
Yan, 2018, A state-of-the-art review on passivation and biofouling of Ti and its alloys in marine environments, J. Mater. Sci. Technol., 34, 421, 10.1016/j.jmst.2017.11.021
Shi, 2021, Recent Advances in the Design of Novel β-Titanium Alloys Using Integrated Theory, Computer Simulation, and Advanced Characterization, Adv. Eng. Mater., 23, 2100152, 10.1002/adem.202100152
Attar, 2020, Additive manufacturing of low-cost porous titanium-based composites for biomedical applications: Advantages, challenges and opinion for future development, J. Alloy. Compd., 827, 10.1016/j.jallcom.2020.154263
Shi, 2019, ω-Assisted α nucleation in a metastable β titanium alloy, Scr. Mater., 171, 62, 10.1016/j.scriptamat.2019.06.020
Attar, 2019, Evaluation of the mechanical and wear properties of titanium produced by three different additive manufacturing methods for biomedical application, Mater. Sci. Eng., A, 760, 339, 10.1016/j.msea.2019.06.024
A. Khalifeh, Stress Corrosion Cracking Behavior of Materials, Engineering Failure Analysis, IntechOpen2020.
Hua, 2005, A review of corrosion of titanium grade 7 and other titanium alloys in nuclear waste repository environments, Corrosion, 61, 987, 10.5006/1.3280899
Antonov, 2021, Nucleation and growth of α phase in a metastable β-Titanium Ti-5Al-5Mo-5V-3Cr alloy: Influence from the nano-scale, ordered-orthorhombic O″ phase and α compositional evolution, Scr. Mater., 194, 10.1016/j.scriptamat.2020.113672
Shi, 2019, Integrated Simulation Framework for Additively Manufactured Ti-6Al-4V: Melt Pool Dynamics, Microstructure, Solid-State Phase Transformation, and Microelastic Response, JOM, 71, 3640
I. Polmear, D. StJohn, J.-F. Nie, M. Qian, Light alloys: metallurgy of the light metals, Butterworth-Heinemann2017.
Liu, 2019, Electrochemical Investigation and Identification of Titanium Hydrides Formed in Mixed Chloride Sulfuric Acid Solution, J. Electrochem. Soc., 166, C3096, 10.1149/2.0121911jes
Vezvaie, 2013, Hydrogen absorption into titanium under cathodic polarization: an in-situ neutron reflectometry and EIS study, J. Electrochem. Soc., 160, C414, 10.1149/2.020309jes
Hruška, 2017, Characterization of defects in titanium created by hydrogen charging, Int. J. Hydrogen Energy, 42, 22557, 10.1016/j.ijhydene.2017.05.104
Liu, 2020, Effect of Hydrogen Precharging on Mechanical and Electrochemical Properties of Pure Titanium, Adv. Eng. Mater., 22, 1901182, 10.1002/adem.201901182
Schneemann, 2018, Nanostructured Metal Hydrides for Hydrogen Storage, Chem. Rev., 118, 10775, 10.1021/acs.chemrev.8b00313
Tal-Gutelmacher, 2005, The hydrogen embrittlement of titanium-based alloys, Jom, 57, 46, 10.1007/s11837-005-0115-0
Sinha, 2018, Effects of hydrogen on fatigue behavior of near-alpha titanium alloys, Scr. Mater., 153, 81, 10.1016/j.scriptamat.2018.03.027
Wang, 2020, Crystallographic orientation dependence of hydride precipitation in commercial pure titanium, Acta Mater., 183, 329, 10.1016/j.actamat.2019.11.027
Vaughan, 2010, Corrosion of Ti-2 and Ti-7 relevant to nickel acid leach chemistry, Hydrometallurgy, 101, 156, 10.1016/j.hydromet.2009.12.011
Bodunrin, 2020, Corrosion behavior of titanium alloys in acidic and saline media: role of alloy design, passivation integrity, and electrolyte modification, Corros. Rev., 38, 25, 10.1515/corrrev-2019-0029
Yan, 2011, Hydrogen absorption into Grade-2 titanium during crevice corrosion, Electrochim. Acta, 56, 1810, 10.1016/j.electacta.2010.11.017
Zeng, 2010, Hydrogen transport through thin titanium oxides, J. Electroanal. Chem., 649, 277, 10.1016/j.jelechem.2010.06.022
Vermesse, 2013, Surface integrity after pickling and anodization of Ti–6Al–4V titanium alloy, Appl. Surf. Sci., 285, 629, 10.1016/j.apsusc.2013.08.103
Kim, 2019, Microstructural and micro-mechanical characterization during hydrogen charging: An in situ scanning electron microscopy study, Int. J. Hydrogen Energy, 44, 6333, 10.1016/j.ijhydene.2018.10.128
Kim, 2020, Hydrogenation-induced lattice expansion and its effects on hydrogen diffusion and damage in Ti–6Al–4V, Acta Mater., 188, 686, 10.1016/j.actamat.2020.02.029
Olsson, 2016, First principles characterisation of brittle transgranular fracture of titanium hydrides, Acta Mater., 118, 362, 10.1016/j.actamat.2016.07.037
Chang, 2018, Characterizing solute hydrogen and hydrides in pure and alloyed titanium at the atomic scale, Acta Mater., 150, 273, 10.1016/j.actamat.2018.02.064
Chang, 2019, Ti and its alloys as examples of cryogenic focused ion beam milling of environmentally-sensitive materials, Nat. Commun., 10, 1, 10.1038/s41467-019-08752-7
Traylor, 2020, Impurity and texture driven HCP-to-FCC transformations in Ti-X thin films during in situ TEM annealing and FIB milling, Acta Mater., 184, 199, 10.1016/j.actamat.2019.11.047
Ulvestad, 2015, Avalanching strain dynamics during the hydriding phase transformation in individual palladium nanoparticles, Nat. Commun., 6, 1, 10.1038/ncomms10092
Ulvestad, 2017, The self-healing of defects induced by the hydriding phase transformation in palladium nanoparticles, Nat. Commun., 8, 1, 10.1038/s41467-017-01548-7
Luo, 2017, Hydrogen effects on microstructural evolution and passive film characteristics of a duplex stainless steel, Electrochem. Commun., 79, 28, 10.1016/j.elecom.2017.04.013
Evers, 2012, The hydrogen electrode in the “dry”: A Kelvin probe approach to measuring hydrogen in metals, Electrochem. Commun., 24, 85, 10.1016/j.elecom.2012.08.019
Senöz, 2011, Scanning Kelvin probe as a highly sensitive tool for detecting hydrogen permeation with high local resolution, Electrochem. Commun., 13, 1542, 10.1016/j.elecom.2011.10.014
Rohwerder, 2007, High-resolution Kelvin probe microscopy in corrosion science: scanning Kelvin probe force microscopy (SKPFM) versus classical scanning Kelvin probe (SKP), Electrochim. Acta, 53, 290, 10.1016/j.electacta.2007.03.016
Evers, 2013, Hydrogen detection in metals: a review and introduction of a Kelvin probe approach, Sci. Technol. Adv. Mater., 14, 10.1088/1468-6996/14/1/014201
Koyama, 2015, Spatially and kinetically resolved mapping of hydrogen in a twinning-induced plasticity steel by use of scanning Kelvin probe force microscopy, J. Electrochem. Soc., 162, C638, 10.1149/2.0131512jes
Tohme, 2019, SKPFM study of hydrogen in a two phase material. Experiments and modelling, Int. J. Hydrogen Energy, 44, 18597, 10.1016/j.ijhydene.2019.05.177
Krieger, 2018, Spatially resolved localization and characterization of trapped hydrogen in zero to three dimensional defects inside ferritic steel, Acta Mater., 144, 235, 10.1016/j.actamat.2017.10.066
Wang, 2013, Investigation of hydrogen evolution and enrichment by scanning Kelvin probe force microscopy, Electrochem. Commun., 35, 100, 10.1016/j.elecom.2013.08.006
Olsson, 2015, Ab initio thermodynamics investigation of titanium hydrides, Comput. Mater. Sci., 97, 263, 10.1016/j.commatsci.2014.10.029
Leyson, 2016, Multiscale modeling of hydrogen enhanced homogeneous dislocation nucleation, Acta Mater., 107, 144, 10.1016/j.actamat.2016.01.036
Leyson, 2015, Multiscale description of dislocation induced nano-hydrides, Acta Mater., 89, 50, 10.1016/j.actamat.2015.01.057
Heo, 2019, A phase-field model for hydride formation in polycrystalline metals: Application to δ-hydride in zirconium alloys, Acta Mater., 181, 262, 10.1016/j.actamat.2019.09.047
Wood, 2020, Beyond Idealized Models of Nanoscale Metal Hydrides for Hydrogen Storage, Ind. Eng. Chem. Res., 59, 5786, 10.1021/acs.iecr.9b06617
Ai, 2006, Electrochemical impedance spectroscopic study of passive zirconium: I. High-temperature, deaerated aqueous solutions, J. Electrochem. Soc., 154, C43, 10.1149/1.2374946
Ai, 2006, Electrochemical Impedance Spectroscopic Study of Passive Zirconium: II. High-Temperature, Hydrogenated Aqueous Solutions, J. Electrochem. Soc., 154, C52, 10.1149/1.2374947
Henderson, 2018, The role of internal cathodic support during the crevice corrosion of Ni-Cr-Mo alloys, Electrochim. Acta, 283, 1600, 10.1016/j.electacta.2018.07.048
Zhu, 2007, Insights into Grain Structures and Their Reactivity on Grade-2 Ti Alloy Surfaces by Scanning Electrochemical Microscopy, Chem. Mater., 19, 2533, 10.1021/cm070023d
R.W. Schutz, Corrosion of titanium and titanium alloys, ASM Handbook, Vol. 13 B, Corrosion: Materials 13 (2005) 252-299.
Wang, 1998, Hydrogen embrittlement of grade 2 and grade 3 titanium in 6% sodium chloride solution, Corrosion, 54, 553, 10.5006/1.3284883
Yan, 2006, Hydrogen absorption into alpha titanium in acidic solutions, Electrochim. Acta, 52, 1169, 10.1016/j.electacta.2006.07.017
O. Abdul-Hamid, R. Latanision, Diffusion of hydrogen in titanium, Hydrogen Effects in Materials; John Wiley & Sons, Inc.: Hoboken, NJ, USA (2013) 205-214.
Pushilina, 2018, Influence of manufacturing parameters on microstructure and hydrogen sorption behavior of electron beam melted titanium Ti-6Al-4V alloy, Materials, 11, 763, 10.3390/ma11050763
Pushilina, 2018, Hydrogen-induced phase transformation and microstructure evolution for Ti-6Al-4V parts produced by electron beam melting, Metals, 8, 301, 10.3390/met8050301
Silverstein, 2018, Hydrogen trapping in 3D-printed (additive manufactured) Ti-6Al-4V, Mater. Charact., 144, 297, 10.1016/j.matchar.2018.07.029
Laptev, 2019, Hydrogen influence on defect structure and mechanical properties of EBM Ti-6Al-4V, Mater. Today:. Proc., 19, 2084
S. Woods, J.A. Lee, Hydrogen embrittlement, (2016).
Singh, 2003, Hydrogen charging, hydrogen content analysis and metallographic examination of hydride in Zirconium alloys, Bhabha Atomic Research Centre
Suda, 2002, Effect of surface modification by ion implantation on hydrogenation property of TiFe alloy, Mater. Trans., 43, 2703, 10.2320/matertrans.43.2703
López-Suárez, 2015, Improvement of titanium hydrogenation by low energy ion irradiation, Int. J. Hydrogen Energy, 40, 4194, 10.1016/j.ijhydene.2015.01.166
Wang, 2002, Mobility and retention of implanted hydrogen in Ti225 titanium alloy, Surf. Coat. Technol., 158, 139, 10.1016/S0257-8972(02)00240-2
López-Suárez, 2017, Study of hydrogen storage capacity of Ti induced by ion irradiation, Int. J. Hydrogen Energy, 42, 14199, 10.1016/j.ijhydene.2017.04.064
Novaković, 2008, Changes of hydrogen storage properties of MgH2 induced by heavy ion irradiation, Int. J. Hydrogen Energy, 33, 1876, 10.1016/j.ijhydene.2008.02.008
Abe, 2011, Improvement of hydrogen absorption characteristics of Pd using irradiation of heavy ions, Trans. Mater. Res. Soc. Jpn, 36, 133, 10.14723/tmrsj.36.133
Navi, 2020, Hydrogen effects on electrochemically charged additive manufactured by electron beam melting (EBM) and wrought Ti–6Al–4V alloys, Int. J. Hydrogen Energy, 45, 25523, 10.1016/j.ijhydene.2020.06.277
Verbeken, 2012, Analysing hydrogen in metals: bulk thermal desorption spectroscopy (TDS) methods, Gaseous hydrogen embrittlement of materials in energy technologies, Elsevier, 27
Azumi, 2002, Monitoring of hydrogen absorption into titanium using resistometry, J. Electrochem. Soc., 149, B422, 10.1149/1.1498257
He, 2002, Temperature dependence of crevice corrosion initiation on titanium grade-2, J. Electrochem. Soc., 149, B440, 10.1149/1.1499501
Caskey, 1974, Diffusion of tritium in rutile (TiO2), Materials Science and Engineering, 14, 109, 10.1016/0025-5416(74)90003-2
Mao, 2018, Hydrogen-Accelerated Phase Transition and Diffusion in TiO2 Thin Films, The Journal of Physical Chemistry C, 122, 23026, 10.1021/acs.jpcc.8b06893
Yen, 1999, Retardation effects of thermally grown oxide films on the hydrogen embrittlement of commercial pure titanium, Corros. Sci., 41, 2031, 10.1016/S0010-938X(99)00022-0
Zhu, 2008, Analyzing the influence of alloying elements and impurities on the localized reactivity of titanium grade-7 by scanning electrochemical microscopy, Anal. Chem., 80, 1437, 10.1021/ac701796u
Makivic, 2021, Evidence of Bulk Proton Insertion in Nanostructured Anatase and Amorphous TiO2 Electrodes, Chem. Mater., 33, 3436, 10.1021/acs.chemmater.1c00840
Hannula, 2018, Improved stability of atomic layer deposited amorphous TiO2 photoelectrode coatings by thermally induced oxygen defects, Chem. Mater., 30, 1199, 10.1021/acs.chemmater.7b02938
Islam, 2011, Hydrogen Adsorption and Diffusion on the Anatase TiO2(101) Surface: A First-Principles Investigation, The Journal of Physical Chemistry C, 115, 6809, 10.1021/jp200408v
Aschauer, 2012, Hydrogen interaction with the anatase TiO2(101) surface, PCCP, 14, 16595, 10.1039/c2cp42288c
Raghunath, 2013, Quantum chemical elucidation of the mechanism for hydrogenation of TiO2 anatase crystals, J. Chem. Phys., 138, 10.1063/1.4799800
Chester, 1963, Electrolytically Induced Conductivity in Rutile, Nature, 199, 1056, 10.1038/1991056a0
Sundaram, 2000, Determination of the diffusion coefficient of hydrogen in gamma titanium aluminides during electrolytic charging, Acta Mater., 48, 1005, 10.1016/S1359-6454(99)00431-0
Christ, 2000, Hydrogen diffusion coefficients in the titanium alloys IMI 834, Ti 10-2-3, Ti 21 S, and alloy C, Metallurgical and Materials Transactions A, 31, 1507, 10.1007/s11661-000-0161-8
Hein, 2003, Gorsky effect study of H and D diffusion in V and Ti at high H (D) concentrations, J. Alloy. Compd., 356, 318, 10.1016/S0925-8388(03)00111-7
Novoselov, 2018, Hydrogen diffusion in titanium dihydrides from first principles, Acta Mater., 153, 250, 10.1016/j.actamat.2018.04.059
Frappart, 2011, Hydrogen trapping in martensitic steel investigated using electrochemical permeation and thermal desorption spectroscopy, Scr. Mater., 65, 859, 10.1016/j.scriptamat.2011.07.042
Teus, 2017, Hydrogen migration and hydrogen-dislocation interaction in austenitic steels and titanium alloy in relation to hydrogen embrittlement, Int. J. Hydrogen Energy, 42, 2424, 10.1016/j.ijhydene.2016.09.212
Wang, 2007, Effect of hydrogen on the fracture behavior of high strength steel during slow strain rate test, Corros. Sci., 49, 4081, 10.1016/j.corsci.2007.03.038
Counts, 2010, First-principles energetics of hydrogen traps in α-Fe: Point defects, Acta Mater., 58, 4730, 10.1016/j.actamat.2010.05.010
Taketomi, 2008, Atomistic study of hydrogen distribution and diffusion around a {1 1 2}< 1 1 1> edge dislocation in alpha iron, Acta Mater., 56, 3761, 10.1016/j.actamat.2008.04.011
Ramunni, 2006, Interaction of hydrogen with the microstructure of low-carbon steel, Mater. Sci. Eng., A, 435, 504, 10.1016/j.msea.2006.07.089
Nagao, 2014, The effect of nanosized (Ti, Mo) C precipitates on hydrogen embrittlement of tempered lath martensitic steel, Acta Mater., 74, 244, 10.1016/j.actamat.2014.04.051
F.-G. Wei, T. Hara, K. Tsuzaki, Nano-preciptates design with hydrogen trapping character in high strength steel, Advanced steels, Springer2011, pp. 87-92.
Frappart, 2010, Study of the hydrogen diffusion and segregation into Fe–C–Mo martensitic HSLA steel using electrochemical permeation test, J. Phys. Chem. Solids, 71, 1467, 10.1016/j.jpcs.2010.07.017
Katzarov, 2017, Hydrogen embrittlement I. Analysis of hydrogen-enhanced localized plasticity: Effect of hydrogen on the velocity of screw dislocations in α-Fe, Physical Review Materials, 1, 10.1103/PhysRevMaterials.1.033602
Itakura, 2013, The effect of hydrogen atoms on the screw dislocation mobility in bcc iron: A first-principles study, Acta Mater., 61, 6857, 10.1016/j.actamat.2013.07.064
Yu, 2019, Discrete dislocation plasticity HELPs understand hydrogen effects in bcc materials, J. Mech. Phys. Solids, 123, 41, 10.1016/j.jmps.2018.08.020
Li, 2022, Hydrogen induced dislocation core reconstruction in bcc tungsten, Acta Mater., 226, 10.1016/j.actamat.2022.117622
P.M. Anderson, J.P. Hirth, J. Lothe, Theory of dislocations, Cambridge University Press2017.
Lu, 2001, Hydrogen-enhanced local plasticity in aluminum: an ab initio study, Phys. Rev. Lett., 87, 10.1103/PhysRevLett.87.095501
Wang, 2019, Effect of hydrogen on nanomechanical properties in Fe-22Mn-0.6 C TWIP steel revealed by in-situ electrochemical nanoindentation, Acta Mater., 166, 618, 10.1016/j.actamat.2018.12.055
Lu, 2019, Effect of electrochemical charging on the hydrogen embrittlement susceptibility of alloy 718, Acta Mater., 179, 36, 10.1016/j.actamat.2019.08.020
Deng, 2018, Hydrogen embrittlement revealed via novel in situ fracture experiments using notched micro-cantilever specimens, Acta Mater., 142, 236, 10.1016/j.actamat.2017.09.057
Zhao, 2018, Effect of hydrogen on the collective behavior of dislocations in the case of nanoindentation, Acta Mater., 148, 18, 10.1016/j.actamat.2018.01.053
Tehranchi, 2019, The role of atomistic simulations in probing hydrogen effects on plasticity and embrittlement in metals, Eng. Fract. Mech., 216, 10.1016/j.engfracmech.2019.106502
Yin, 2019, Hydrogen embrittlement in metallic nanowires, Nat. Commun., 10, 1, 10.1038/s41467-019-10035-0
Lu, 2020, Effect of hydrogen on deformation behavior of Alloy 725 revealed by in-situ bi-crystalline micropillar compression test, J Mater Sci Technol, 67, 243, 10.1016/j.jmst.2020.08.006
Rokhmanenkov, 2017, Simulation of hydrogen diffusion in TiH x structures, Phys. Met. Metall., 118, 28, 10.1134/S0031918X16100094
Bond, 1987, The influence of hydrogen on deformation and fracture processes in high-strength aluminum alloys, Acta Metall., 35, 2289, 10.1016/0001-6160(87)90076-9
Bond, 1989, On the mechanisms of hydrogen embrittlement of Ni3Al alloys, Acta Metall., 37, 1407, 10.1016/0001-6160(89)90172-7
Ferreira, 1998, Hydrogen effects on the interaction between dislocations, Acta Mater., 46, 1749, 10.1016/S1359-6454(97)00349-2
Chateau, 2002, Numerical simulations of hydrogen–dislocation interactions in fcc stainless steels.: part II: hydrogen effects on crack tip plasticity at a stress corrosion crack, Acta Mater., 50, 1523, 10.1016/S1359-6454(02)00009-5
Kirchheim, 2007, Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. I. Theoretical background, Acta Mater., 55, 5129, 10.1016/j.actamat.2007.05.047
Barnoush, 2010, Recent developments in the study of hydrogen embrittlement: Hydrogen effect on dislocation nucleation, Acta Mater., 58, 5274, 10.1016/j.actamat.2010.05.057
Xie, 2011, Hydrogen hardening effect in heavily deformed single crystal α-Fe, Comput. Mater. Sci., 50, 3397, 10.1016/j.commatsci.2011.06.036
Song, 2011, A nanoscale mechanism of hydrogen embrittlement in metals, Acta Mater., 59, 1557, 10.1016/j.actamat.2010.11.019
Myers, 1992, Hydrogen interactions with defects in crystalline solids, Rev. Mod. Phys., 64, 559, 10.1103/RevModPhys.64.559
Teter, 2001, The effects of hydrogen on the deformation and fracture of β-titanium, Acta Mater., 49, 4313, 10.1016/S1359-6454(01)00301-9
Sun, 2018, Improving the mechanical processing of titanium by hydrogen doping: A first-principles study, Int. J. Hydrogen Energy, 43, 6756, 10.1016/j.ijhydene.2018.02.066
Poletaev, 2016, Hydrogen solubility in hcp titanium with the account of vacancy complexes and hydrides: A DFT study, Comput. Mater. Sci., 114, 199, 10.1016/j.commatsci.2015.12.037
Lane, 2011, First-principles study of dislocations in hcp metals through the investigation of the ($11\overline{2}1$) twin boundary, Physical Review B, 84, 10.1103/PhysRevB.84.184101
Jia, 2020, Interactions between hydrogen and the (112¯1) twin boundary in hexagonal close-packed titanium, Int. J. Hydrogen Energy, 45, 9854, 10.1016/j.ijhydene.2020.01.143
Wen, 2016, Hydrogen evolution and its effects on cold rolling behavior in commercial pure titanium, Mater. Charact., 121, 139, 10.1016/j.matchar.2016.10.002
J. Wen, N. Main, E. Fleury, The Effect of Hydrogen‐Deformation Interactions on Recrystallization of β‐21S Titanium Alloys, Proceedings of the 13th World Conference on Titanium, Wiley Online Library, 2016, pp. 275-280.
Wang, 2019, Microstructure and formation mechanisms of δ-hydrides in variable grain size Zircaloy-4 studied by electron backscatter diffraction, Acta Mater., 169, 76, 10.1016/j.actamat.2019.02.042
Watanabe, 1988, Effect of iron content on the breakdown potential for pitting of titanium in NaCl solutions, Sixth World Conference on Titanium. IV, 1735
Hua, 2005, Modeling the hydrogen-induced cracking of titanium alloys in nuclear waste repository environments, JOM, 57, 20, 10.1007/s11837-005-0059-4
Nayak, 2018, Insight into point defects and impurities in titanium from first principles, npj Comput. Mater., 4, 11, 10.1038/s41524-018-0068-9
He, 2004, Effects of iron content on microstructure and crevice corrosion of grade-2 titanium, Corrosion, 60, 378, 10.5006/1.3287747
Ikeda, 1998, A Preliminary Examination of the Effects of Hydrogen on the Behaviour of Grade-16 Titanium at Room Temperature, Ontario Hydro
Ikeda, 1998, Hydrogen Assisted Cracking of Grade-16 Titanium: A Preliminary Examination of Behaviour at Room Temperature, Ontario Hydro
Shoesmith, 1997, The resistance of titanium to pitting, microbially induced corrosion and corrosion in unsaturated conditions, Atomic Energy of Canada Limited
Hubler, 1980, The corrosion behaviour and rutherford backscattering analysis of palladium-implanted titanium, Corros. Sci., 20, 103, 10.1016/0010-938X(80)90114-6
Armstrong, 1973, Ring-disc studies of titanium-palladium alloy corrosion, Corros. Sci., 13, 409, 10.1016/0010-938X(73)90027-9
Okada, 1983, Factors influencing the cathodic charging efficiency of hydrogen by modified titanium electrodes, Electrochim. Acta, 28, 1113, 10.1016/0013-4686(83)80015-2
Glass, 1983, Effect of intermetallic Ti2Ni on the electrochemistry of TiCode-12 in hydrochloric acid, Electrochim. Acta, 28, 1507, 10.1016/0013-4686(83)85209-8
L. Covington, R. Schutz, Effects of iron on the corrosion resistance of titanium, Industrial Applications of Titanium and Zirconium, ASTM International1981.
B.M. Ikeda, M.G. Bailey, M.J. Quinn, D.W. Shoesmith, The development of an experimental data base for the lifetime predictions of titanium nuclear waste containers, Application of Accelerated Corrosion Tests to Service Life Prediction of Materials, ASTM International1994.
G. Lutjering, U. Zwicker, W. Bunk, Titanium: Science and Technology: Proceedings of the Fifth International Conference on Titanium Congress-Center, Munich, FRG September 10-14, 1984, Deutsche Gesellschaft fur Metallkunde e V.1985.
D. Pletcher, R. Greff, R. Peat, L. Peter, J. Robinson, Instrumental methods in electrochemistry, Elsevier2001.
Fukuzuka, 1980, Role of palladium in hydrogen absorption of Ti-Pd alloy, CORROSION ENGINEERING, 29, 622, 10.3323/jcorr1974.29.12_622
Cotton, 1970, Using Titanium in the Chemical Plant, Chem. Eng. Prog., 66, 57
Wu, 1984, Effect of Iron Content on Hydrogen Absorption and Passivity Breakdown of Commercially Pure Titanium in Aqueous Solutions, Titanium-Science and Technology., 4, 2595
Zhu, 2018, Intermetallic Phases in Aluminum Alloys and Their Roles in Localized Corrosion, J. Electrochem. Soc., 165, C807, 10.1149/2.0931811jes
Zhu, 2012, Evaluation of Al3Mg2 Precipitates and Mn-Rich Phase in Aluminum-Magnesium Alloy Based on Scanning Transmission Electron Microscopy Imaging, Metallurgical and Materials Transactions A, 43, 4933, 10.1007/s11661-012-1354-7
Zhu, 2020, Localized corrosion at nm-scale hardening precipitates in Al-Cu-Li alloys, Acta Mater., 189, 204, 10.1016/j.actamat.2020.03.006
Topic, 2018, The effect of surface oxidation on hydrogen absorption in Ti-6Al-4V alloy studied by elastic recoil detection (ERD), X-ray diffraction and nanohardness techniques, J. Alloy. Compd., 740, 879, 10.1016/j.jallcom.2017.11.269
Conforto, 2007, A fast method for determining favourable orientation relationships and interface planes: Application to titanium–titanium hydrides transformations, Acta Mater., 55, 785, 10.1016/j.actamat.2006.06.061
E. Conforto, D. Caillard, Edge-to-edge matching at Ti-TiH interfaces: kinetics of hydride growth and clustering of precipitates with different orientation relationships, Solid State Phenomena, Trans Tech Publ, 2011, pp. 242-247.
Millenbach, 1982, The electrochemical formation of titanium hydride, Journal of the less common metals, 87, 179, 10.1016/0022-5088(82)90086-8
Numakura, 1986, X-ray diffraction study on the formation of γ titanium hydride, Scr. Metall., 20, 213, 10.1016/0036-9748(86)90128-6
Sandim, 2005, Kinetics of thermal decomposition of titanium hydride powder using in situ high-temperature X-ray diffraction (HTXRD), Mater. Res., 8, 293, 10.1590/S1516-14392005000300012
F. Manchester, A. San-Martin, H-Ti(hydrogen-titanium), Phase Diagrams of Binary Hydrogen Alloys. ASM International, Member/Customer Service Center, Materials Park, OH 44073-0002, USA, 2000. (2000) 238-258.
Numakura, 1988, Neutron diffraction study of the metastable γ titanium deuteride, Acta Metall., 36, 2267, 10.1016/0001-6160(88)90326-4
Li, 2017, Effect of hydrogen on the microstructure and superplasticity of Ti-55 alloy, Int. J. Hydrogen Energy, 42, 6338, 10.1016/j.ijhydene.2017.01.018
Zheng, 2019, Deformation induced FCC lamellae and their interaction in commercial pure Ti, Scr. Mater., 162, 326, 10.1016/j.scriptamat.2018.11.037
Chang, 2020, Could face-centered cubic titanium in cold-rolled commercially-pure titanium only be a Ti-hydride?, Scr. Mater., 178, 39, 10.1016/j.scriptamat.2019.11.010
Yu, 2017, In situ TEM observation of FCC Ti formation at elevated temperatures, Scr. Mater., 140, 9, 10.1016/j.scriptamat.2017.06.033
Hanlon, 2019, A solution to FIB induced artefact hydrides in Zr alloys, J. Nucl. Mater., 515, 122, 10.1016/j.jnucmat.2018.12.020
Mouton, 2021, Hydride growth mechanism in zircaloy-4: Investigation of the partitioning of alloying elements, Materialia, 15, 10.1016/j.mtla.2021.101006
Haley, 2014, Atom probe tomography observation of hydrogen in high-Mn steel and silver charged via an electrolytic route, international journal of hydrogen energy, 39, 12221
Breen, 2020, Solute hydrogen and deuterium observed at the near atomic scale in high-strength steel, Acta Mater., 188, 108, 10.1016/j.actamat.2020.02.004
Lanin, 1984, Mechanical properties of zirconium, titanium and yttrium hydride alloys, Probl. Prochn., 83
G. Welsch, R. Boyer, E. Collings, Materials properties handbook: titanium alloys, ASM international1993.
Simpson, 1979, Fracture toughness of zirconium hydride and its influence on the crack resistance of zirconium alloys, J. Nucl. Mater., 87, 303, 10.1016/0022-3115(79)90567-1
G. Lütjering, J.C. Williams, Titanium, Springer Science & Business Media2007.
Chen, 2004, An investigation on structure, deformation and fracture of hydrides in titanium with a large range of hydrogen contents, Acta Mater., 52, 3697, 10.1016/j.actamat.2004.04.024
Xu, 2007, Mechanical properties of titanium hydride, J. Alloy. Compd., 436, 82, 10.1016/j.jallcom.2006.06.107
Chen, 2003, The deformation behaviors of gamma hydrides in titanium under cyclic straining, Acta Mater., 51, 931, 10.1016/S1359-6454(02)00495-0
Setoyama, 2004, Mechanical properties of titanium hydride, J. Alloy. Compd., 381, 215, 10.1016/j.jallcom.2004.04.073
Numakura, 1986, Hydride precipitation in titanium, Perspectives in Hydrogen in Metals, Elsevier, 501
Xu, 2007, First-principles investigation of metal-hydride phase stability: The Ti-H system, Physical Review B, 76, 10.1103/PhysRevB.76.064207
Liang, 2013, Atomic structure, mechanical quality, and thermodynamic property of TiH x phases, J. Appl. Phys., 114, 10.1063/1.4816485
Cowley, 1976, Acoustic phonon instabilities and structural phase transitions, Physical Review B, 13, 4877, 10.1103/PhysRevB.13.4877
Liang, 2013, Ab initio study of helium behavior in titanium tritides, Comput. Mater. Sci., 69, 107, 10.1016/j.commatsci.2012.11.033
Y. Fukai, The metal-hydrogen system: basic bulk properties, Springer Science & Business Media2006.
Wolf, 2000, First-principles investigations of transition metal dihydrides, TH2: T= Sc, Ti, V, Y, Zr, Nb; energetics and chemical bonding, J. Phys.: Condens. Matter, 12, 4535
Quijano, 2009, Electronic structure and energetics of the tetragonal distortion for TiH 2, ZrH 2, and HfH 2: A first-principles study, Physical Review B, 80, 10.1103/PhysRevB.80.184103
Liu, 2013, Ab initio calculations of structure and thermodynamic properties of tetragonal-TiH2 under high temperatures and pressures, The European Physical Journal Applied Physics, 64, 10201, 10.1051/epjap/2013130313
Miwa, 2002, First-principles study on 3 d transition-metal dihydrides, Physical Review B, 65, 10.1103/PhysRevB.65.155114
Li, 2017, Investigations of deformation-induced δ→ ζ phase transformation in zirconium hydride by in situ high-energy X-ray diffraction, Acta Mater., 140, 168, 10.1016/j.actamat.2017.08.047
Örnek, 2020, Metastable precursor structures in hydrogen-infused super duplex stainless steel microstructure–An operando diffraction experiment, Corros. Sci., 176, 10.1016/j.corsci.2020.109021
Zhu, 2017, A review of surfactants as corrosion inhibitors and associated modeling, Prog. Mater Sci., 90, 159, 10.1016/j.pmatsci.2017.07.006
Videm, 2008, Hydride formation on titanium surfaces by cathodic polarization, Appl. Surf. Sci., 255, 3011, 10.1016/j.apsusc.2008.08.090
Vaughan, 2005, Corrosion of titanium and its alloys in sulfuric acid in the presence of chlorides, J. Electrochem. Soc., 153, B6, 10.1149/1.2126580
Revathi, 2016, Current advances in enhancement of wear and corrosion resistance of titanium alloys-a review, Mater. Technol., 31, 696, 10.1080/10667857.2016.1212780
Sander, 2018, Corrosion of additively manufactured alloys: a review, Corrosion, 74, 1318, 10.5006/2926
Ellerbrock, 2014, Passivity of titanium, part 1: film growth model diagnostics, J. Solid State Electrochem., 18, 1485, 10.1007/s10008-013-2334-6
Roh, 2019, Passivity of titanium: part II, the defect structure of the anodic oxide film, J. Solid State Electrochem., 23, 1967, 10.1007/s10008-019-04254-0
Roh, 2019, The passivity of titanium—part III: characterization of the anodic oxide film, J. Solid State Electrochem., 23, 2001, 10.1007/s10008-019-04255-z
Roh, 2019, Passivity of titanium, part IV: reversible oxygen vacancy generation/annihilation, J. Solid State Electrochem., 23, 2863, 10.1007/s10008-019-04363-w
Martin, 2013, A microstructural based understanding of hydrogen-enhanced fatigue of stainless steels, Int. J. Fatigue, 57, 28, 10.1016/j.ijfatigue.2012.08.009
Robertson, 2015, Hydrogen embrittlement understood, Metallurgical and Materials Transactions B, 46, 1085, 10.1007/s11663-015-0325-y
Kirchheim, 2010, Revisiting hydrogen embrittlement models and hydrogen-induced homogeneous nucleation of dislocations, Scr. Mater., 62, 67, 10.1016/j.scriptamat.2009.09.037
Lynch, 2012, Hydrogen embrittlement phenomena and mechanisms, Corros. Rev., 30, 105
S. Lynch, Towards understanding mechanisms and kinetics of environmentally assisted cracking, Environment-induced cracking of materials, Elsevier2008, pp. 167-177.
Oriani, 1972, A mechanistic theory of hydrogen embrittlement of steels, Ber. Bunsenges. Phys. Chem., 76, 848, 10.1002/bbpc.19720760864
Wang, 2013, A quantitative description on fracture toughness of steels in hydrogen gas, Int. J. Hydrogen Energy, 38, 12503, 10.1016/j.ijhydene.2013.07.033
Tarzimoghadam, 2016, Multi-scale and spatially resolved hydrogen mapping in a Ni–Nb model alloy reveals the role of the δ phase in hydrogen embrittlement of alloy 718, Acta Mater., 109, 69, 10.1016/j.actamat.2016.02.053
Nagumo, 2001, Function of hydrogen in embrittlement of high-strength steels, ISIJ Int., 41, 590, 10.2355/isijinternational.41.590
Nagumo, 2012, Conformity between mechanics and microscopic functions of hydrogen in failure, ISIJ Int., 52, 168, 10.2355/isijinternational.52.168
Tarzimoghadam, 2017, Hydrogen-assisted failure in Ni-based superalloy 718 studied under in situ hydrogen charging: the role of localized deformation in crack propagation, Acta Mater., 128, 365, 10.1016/j.actamat.2017.02.059
Tateyama, 2003, Stability and clusterization of hydrogen-vacancy complexes in α− Fe: an ab initio study, Physical Review B, 67, 10.1103/PhysRevB.67.174105
Li, 2015, The interaction of dislocations and hydrogen-vacancy complexes and its importance for deformation-induced proto nano-voids formation in α-Fe, Int. J. Plast., 74, 175, 10.1016/j.ijplas.2015.05.017
Prando, 2017, Corrosion of titanium: Part 1: Aggressive environments and main forms of degradation, Journal of Applied Biomaterials & Functional Materials, 15, e291, 10.5301/jabfm.5000387
R. Cottis, Shreir's corrosion, Elsevier Amsterdam, The Netherlands:2010.
Harris, 2020, On the fatigue crack growth behavior of Ti–10V–2Fe–3Al in gaseous hydrogen, Int. J. Hydrogen Energy, 45, 27929, 10.1016/j.ijhydene.2020.07.046
Madina, 2009, Compatibility of materials with hydrogen, Particular case: Hydrogen embrittlement of titanium alloys, International journal of hydrogen energy, 34, 5976
Cao, 2017, The mechanism of aqueous stress-corrosion cracking of α+ β titanium alloys, Corros. Sci., 125, 29, 10.1016/j.corsci.2017.05.025
Cao, 2017, Effects of microtexture and Ti3Al (α2) precipitates on stress-corrosion cracking properties of a Ti-8Al-1Mo-1V alloy, Corros. Sci., 116, 22, 10.1016/j.corsci.2016.12.012
Shih, 1988, Hydrogen embrittlement of α titanium: in situ TEM studies, Acta Metall., 36, 111, 10.1016/0001-6160(88)90032-6
Scully, 1970, The stress corrosion cracking mechanism of α-titanium alloys at room temperature, Corros. Sci., 10, 719, 10.1016/S0010-938X(70)80043-9
S. Josepha, P. Kontis, Y. Chang, Y. Shi, D. Raabe, B. Gault, D. Dye, A cracking oxygen story: a new view of stress corrosion cracking in titanium alloys, arXiv preprint arXiv:2009.10567 (2020).
Macdonald, 2011, The history of the point defect model for the passive state: a brief review of film growth aspects, Electrochim. Acta, 56, 1761, 10.1016/j.electacta.2010.11.005
Kang, 2018, Assessing the reactivity of TiCl3 and TiF3 with hydrogen, Int. J. Hydrogen Energy, 43, 14507, 10.1016/j.ijhydene.2018.05.128
Sen-Britain, 2021, Transformations of Ti-5Al-5V-5Cr-3Mo powder due to reuse in laser powder bed fusion: A surface analytical approach, Appl. Surf. Sci., 564, 10.1016/j.apsusc.2021.150433
Landers, 2021, Dynamics and Hysteresis of Hydrogen Intercalation and Deintercalation in Palladium Electrodes: A Multimodal In Situ X-ray Diffraction, Coulometry, and Computational Study, Chemistry of Materials, 33, 5872
Wei, 2017, A review on the characterization of hydrogen in hydrogen storage materials, Renew. Sustain. Energy Rev., 79, 1122, 10.1016/j.rser.2017.05.132
Greer, 2011, Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect, Prog. Mater Sci., 56, 654, 10.1016/j.pmatsci.2011.01.005
Kraft, 2010, Plasticity in confined dimensions, Annu. Rev. Mater. Res., 40, 293, 10.1146/annurev-matsci-082908-145409
Xie, 2016, Hydrogenated vacancies lock dislocations in aluminium, Nat. Commun., 7, 1, 10.1038/ncomms13341
Hajilou, 2018, In situ small-scale hydrogen embrittlement testing made easy: An electrolyte for preserving surface integrity at nano-scale during hydrogen charging, Int. J. Hydrogen Energy, 43, 12516, 10.1016/j.ijhydene.2018.04.168
Gutierrez-Urrutia, 2013, Coupling of Electron Channeling with EBSD: Toward the Quantitative Characterization of Deformation Structures in the SEM, JOM, 65, 1229, 10.1007/s11837-013-0678-0
Han, 2018, ECCI based characterization of dislocation shear in polycrystalline arrays during heterogeneous deformation of commercially pure titanium, Mater. Charact., 142, 504, 10.1016/j.matchar.2018.06.003
de Graaf, 2020, Resolving hydrogen atoms at metal-metal hydride interfaces, Science, Advances, 6, eaay4312
R.A. Karnesky, P. Chao, D.A. Buchenauer, Hydrogen Isotope Permeation and Trapping in Additively Manufactured Steels, Pressure Vessels and Piping Conference, American Society of Mechanical Engineers, 2017, p. V06AT06A019.
Lisowski, 2000, Characterization of titanium hydride films covered by nanoscale evaporated Au layers: ToF-SIMS, XPS and AES depth profile analysis, Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of surfaces, interfaces and thin films, 29, 292
Duan, 2020, IBA investigation on the effect of Ti-Mo interdiffusion on the D concentration in TiDx/Mo films, Nucl. Instrum. Methods Phys. Res., Sect. B, 470, 61, 10.1016/j.nimb.2020.03.014
Vollnhals, 2017, Correlative microscopy combining secondary ion mass spectrometry and electron microscopy: comparison of intensity–hue–saturation and Laplacian pyramid methods for image fusion, Anal. Chem., 89, 10702, 10.1021/acs.analchem.7b01256
Klingner, 2019, Time-of-flight secondary ion mass spectrometry in the helium ion microscope, Ultramicroscopy, 198, 10, 10.1016/j.ultramic.2018.12.014
Duca, 2019, On the benefits of using multivariate analysis in mass spectrometric studies of combustion-generated aerosols, Faraday Discuss., 218, 115, 10.1039/C8FD00238J
F. Walther, R. Koerver, T. Fuchs, S. Ohno, J. Sann, M. Rohnke, W.G. Zeier, J.r. Janek, Visualization of the interfacial decomposition of composite cathodes in argyrodite-based all-solid-state batteries using time-of-flight secondary-ion mass spectrometry, Chemistry of Materials 31(10) (2019) 3745-3755.
Benettoni, 2019, Identification of nanoparticles and their localization in algal biofilm by 3D-imaging secondary ion mass spectrometry, J. Anal. At. Spectrom., 34, 1098, 10.1039/C8JA00439K
Castellanos, 2019, Three dimensional secondary ion mass spectrometry imaging (3D-SIMS) of Aedes aegypti ovarian follicles, J. Anal. At. Spectrom., 34, 874, 10.1039/C8JA00425K
F. Stevie, Secondary ion mass spectrometry: Applications for depth profiling and surface characterization, Momentum Press2015.
Aboura, 2021, Characterising hydrogen induced cracking of alloy 625+ using correlative SEM-EDX and NanoSIMS, Corros. Sci., 181, 10.1016/j.corsci.2020.109228
L. Sangely, B. Boyer, E. de Chambost, N. Valle, J.-N. Audinot, T. Ireland, M. Wiedenbeck, J. Aléon, H. Jungnickel, J.-P. Barnes, Secondary ion mass spectrometry, Sector field mass spectrometry for elemental and isotopic analysis2014, pp. 439-499.
S. Fearn, An introduction to time-of-flight secondary ion mass spectrometry (ToF-SIMS) and its application to materials science, Morgan & Claypool Publishers San Rafael, CA, USA2015.
Aboura, 2021, NanoSIMS analysis of hydrogen and deuterium in metallic alloys: Artefacts and best practice, Appl. Surf. Sci., 557, 10.1016/j.apsusc.2021.149736
B. Gault, M.P. Moody, J.M. Cairney, S.P. Ringer, Atom probe microscopy, Springer Science & Business Media2012.
Sundell, 2013, Hydrogen analysis in APT: methods to control adsorption and dissociation of H2, Ultramicroscopy, 132, 285, 10.1016/j.ultramic.2013.01.007
Takahashi, 2010, The first direct observation of hydrogen trapping sites in TiC precipitation-hardening steel through atom probe tomography, Scr. Mater., 63, 261, 10.1016/j.scriptamat.2010.03.012
Chen, 2017, Direct observation of individual hydrogen atoms at trapping sites in a ferritic steel, Science, 355, 1196, 10.1126/science.aal2418
McCarroll, 2020, New frontiers in atom probe tomography: A review of research enabled by cryo and/or vacuum transfer systems, Materials Today Advances, 7, 10.1016/j.mtadv.2020.100090
Schreiber, 2018, A method for site-specific and cryogenic specimen fabrication of liquid/solid interfaces for atom probe tomography, Ultramicroscopy, 194, 89, 10.1016/j.ultramic.2018.07.010
Perea, 2020, Tomographic mapping of the nanoscale water-filled pore structure in corroded borosilicate glass, npj Mater. Degrad., 4, 1, 10.1038/s41529-020-0110-5
Felfer, 2019, A Toolchain for the Analysis of Hydrogen in Materials at the Atomic Scale, Microsc. Microanal., 25, 278, 10.1017/S1431927619002125
Zachman, 2019, Cryogenic specimens for nanoscale characterization of solid–liquid interfaces, MRS Bull., 44, 949, 10.1557/mrs.2019.289
Marxer, 2005, Supported membrane composition analysis by secondary ion mass spectrometry with high lateral resolution, Biophys. J ., 88, 2965, 10.1529/biophysj.104.057257
Boxer, 2009, Advances in imaging secondary ion mass spectrometry for biological samples, Annu. Rev. Biophys., 38, 53, 10.1146/annurev.biophys.050708.133634
Nuñez, 2018, NanoSIMS for biological applications: current practices and analyses, Biointerphases, 13, 03B301, 10.1116/1.4993628
Williams, 2013, Surface oxide reduction by hydrogen permeation through iron foil detected using a scanning Kelvin probe, Electrochem. Commun., 27, 144, 10.1016/j.elecom.2012.11.022
Schaller, 2016, Spatial determination of diffusible hydrogen concentrations proximate to pits in a Fe–Cr–Ni–Mo steel using the scanning Kelvin probe, Electrochem. Commun., 63, 5, 10.1016/j.elecom.2015.12.002
Larignon, 2013, Investigation of Kelvin probe force microscopy efficiency for the detection of hydrogen ingress by cathodic charging in an aluminium alloy, Scr. Mater., 68, 479, 10.1016/j.scriptamat.2012.11.026
A. Oudriss, F. Martin, X. Feaugas, Experimental Techniques for Dosage and Detection of Hydrogen, Mechanics-Microstructure-Corrosion Coupling, Elsevier2019, pp. 245-268.
Hua, 2019, The finding of hydrogen trapping at phase boundary in austenitic stainless steel by scanning Kelvin probe force microscopy, Scr. Mater., 162, 219, 10.1016/j.scriptamat.2018.11.020
Oger, 2017, Hydrogen diffusion and trapping in a low copper 7xxx aluminium alloy investigated by Scanning Kelvin Probe Force Microscopy, Mater. Sci. Eng., A, 706, 126, 10.1016/j.msea.2017.08.119
Oger, 2019, Influence of dislocations on hydrogen diffusion and trapping in an Al-Zn-Mg aluminium alloy, Mater. Des., 180, 10.1016/j.matdes.2019.107901
Duportal, 2020, On the estimation of the diffusion coefficient and distribution of hydrogen in stainless steel, Scr. Mater., 186, 282, 10.1016/j.scriptamat.2020.05.040
Y. Wang, M. Nastasi, Handbook of modern ion beam materials analysis, Materials Research Society Warrendale, PA2009.
Lopez-Suarez, 2003, Analysis of hydrogen absorption by Ti and Ti–6Al–4V using the ERDA technique, Int. J. Hydrogen Energy, 28, 1107, 10.1016/S0360-3199(02)00202-1
Topić, 2019, Hydrogen storage in Ti-based metal hydrides investigated by elastic recoil detection analysis, Nucl. Instrum. Methods Phys. Res., Sect. B, 450, 239, 10.1016/j.nimb.2018.05.015
Jiménez, 2011, Decomposition of TiH2 studied in situ by synchrotron X-ray and neutron diffraction, Acta Mater., 59, 6318, 10.1016/j.actamat.2011.06.042
Herbrig, 2015, Investigations of the structural stability of metal hydride composites by in-situ neutron imaging, J. Power Sources, 293, 109, 10.1016/j.jpowsour.2015.05.039
Buitrago, 2018, Determination of very low concentrations of hydrogen in zirconium alloys by neutron imaging, J. Nucl. Mater., 503, 98, 10.1016/j.jnucmat.2018.02.048
Stepanova, 2019, Hydrogen effect on Ti-6.5 Al-3.5 Mo-1.5 Zr-0.3 Si parts produced by electron beam melting, Int. J. Hydrogen Energy, 44, 29380, 10.1016/j.ijhydene.2019.03.156
Colas, 2010, In situ study of hydride precipitation kinetics and re-orientation in Zircaloy using synchrotron radiation, Acta Mater., 58, 6575, 10.1016/j.actamat.2010.07.018
Alvarez, 2012, Hydride reorientation in Zr2. 5Nb studied by synchrotron X-ray diffraction, Acta Mater., 60, 6892, 10.1016/j.actamat.2012.07.029
J. Kim, J. Kang, C.C. Tasan, Hydride formation in Ti6Al4V: An in situ synchrotron X-ray diffraction study, Scripta Materialia 193 12-16.
Blackmur, 2016, Strain evolution during hydride precipitation in Zircaloy-4 observed with synchrotron X-ray diffraction, J. Nucl. Mater., 474, 45, 10.1016/j.jnucmat.2016.01.039
Ulvestad, 2014, Single particle nanomechanics in operando batteries via lensless strain mapping, Nano Lett., 14, 5123, 10.1021/nl501858u
Clark, 2013, Ultrafast three-dimensional imaging of lattice dynamics in individual gold nanocrystals, Science, 341, 56, 10.1126/science.1236034
Ulvestad, 2017, Three-dimensional imaging of dislocation dynamics during the hydriding phase transformation, Nat. Mater., 16, 565, 10.1038/nmat4842
Mazza, 2008, Probing the chemical reactivity of free titanium clusters by x-ray absorption spectroscopy, Appl. Phys. A, 92, 463, 10.1007/s00339-008-4554-7
Lanford, 1992, Analysis for hydrogen by nuclear reaction and energy recoil detection, Nucl. Instrum. Methods Phys. Res., Sect. B, 66, 65, 10.1016/0168-583X(92)96142-L
M. Wilde, S. Ohno, S. Ogura, K. Fukutani, H. Matsuzaki, Quantification of hydrogen concentrations in surface and interface layers and bulk materials through depth profiling with nuclear reaction analysis, Journal of visualized experiments: JoVE (109) (2016).
Chen, 2002, Phase-field models for microstructure evolution, Annu. Rev. Mater. Res., 32, 113, 10.1146/annurev.matsci.32.112001.132041
Heo, 2013, A phase-field model for elastically anisotropic polycrystalline binary solid solutions, Phil. Mag., 93, 1468, 10.1080/14786435.2012.744880
Heo, 2014, Phase-field modeling of displacive phase transformations in elastically anisotropic and inhomogeneous polycrystals, Acta Mater., 76, 68, 10.1016/j.actamat.2014.05.014
Takeda, 2019, Current status of titanium recycling and related technologies, JOM, 71, 1981, 10.1007/s11837-018-3278-1
A. El Kharbachi, E. Dematteis, K. Shinzato, S. Stevenson, L. Bannenberg, M. Heere, C. Zlotea, P.A. Szilágyi, J.-P. Bonnet, W. Grochala, Metal hydrides and related materials. Energy carriers for novel hydrogen and electrochemical storage, ACS Publications, 2020.
Kaur, 2019, Review on titanium and titanium based alloys as biomaterials for orthopaedic applications, Mater. Sci. Eng., C, 102, 844, 10.1016/j.msec.2019.04.064
Bair, 2015, A review on hydride precipitation in zirconium alloys, J. Nucl. Mater., 466, 12, 10.1016/j.jnucmat.2015.07.014
Motta, 2019, Hydrogen in zirconium alloys: A review, J. Nucl. Mater., 518, 440, 10.1016/j.jnucmat.2019.02.042
Ma, 2002, Effect of applied load on nucleation and growth of γ-hydrides in zirconium, Comput. Mater. Sci., 23, 283, 10.1016/S0927-0256(01)00226-9
Ma, 2002, Phase-field simulation of hydride precipitation in bi-crystalline zirconium, Scr. Mater., 47, 237, 10.1016/S1359-6462(02)00131-8
Ma, 2006, The phase field model for hydrogen diffusion and γ-hydride precipitation in zirconium under non-uniformly applied stress, Mech. Mater., 38, 3, 10.1016/j.mechmat.2005.05.005
Guo, 2008, An elastoplastic phase-field model for the evolution of hydride precipitation in zirconium, Part I: Smooth specimen, Journal of Nuclear Materials, 378, 110
Guo, 2008, An elastoplastic phase-field model for the evolution of hydride precipitation in zirconium, Part II: specimen with flaws, Journal of Nuclear Materials, 378, 120
Thuinet, 2012, Phase-field modeling of precipitate evolution dynamics in elastically inhomogeneous low-symmetry systems: Application to hydride precipitation in Zr, Acta Mater., 60, 5311, 10.1016/j.actamat.2012.05.041
Thuinet, 2013, Mesoscale modeling of coherent zirconium hydride precipitation under an applied stress, J. Nucl. Mater., 438, 32, 10.1016/j.jnucmat.2013.02.034
Bair, 2017, Formation path of δ hydrides in zirconium by multiphase field modeling, Acta Mater., 123, 235, 10.1016/j.actamat.2016.10.056
Shi, 2015, A quantitative phase field model for hydride precipitation in zirconium alloys: Part I. Development of quantitative free energy functional, J. Nucl. Mater., 459, 323, 10.1016/j.jnucmat.2014.03.013
Xiao, 2015, A quantitative phase field model for hydride precipitation in zirconium alloys: Part II. Modeling of temperature dependent hydride precipitation, J. Nucl. Mater., 459, 330, 10.1016/j.jnucmat.2014.12.110
Han, 2019, Phase-field modeling of stacking structure formation and transition of δ-hydride precipitates in zirconium, Acta Mater., 165, 528, 10.1016/j.actamat.2018.12.009
Qiu, 2008, Thermodynamic modeling of the Na–Al–Ti–H system and Ti dissolution in sodium alanates, Calphad, 32, 624, 10.1016/j.calphad.2008.08.005
Han, 2009, First-principles study of hydrogen diffusion in alpha Ti, Int. J. Hydrogen Energy, 34, 3983, 10.1016/j.ijhydene.2009.02.061
Chapman, 2022, Efficient and universal characterization of atomic structures through a topological graph order parameter, npj Comput. Mater., 8, 37, 10.1038/s41524-022-00717-7
Lu, 2015, The irreversibility of the passive state of carbon steel in the alkaline concrete pore solution under simulated anoxic conditions, J. Electrochem. Soc., 162, C572, 10.1149/2.0731510jes
Heo, 2021, Microstructural impacts on ionic conductivity of oxide solid electrolytes from a combined atomistic-mesoscale approach, npj Comput. Mater., 7, 214, 10.1038/s41524-021-00681-8
Modi, 2019, Titanium-iron-manganese (TiFe0.85Mn0.15) alloy for hydrogen storage: Reactivation upon oxidation, Int. J. Hydrogen Energy, 44, 16757, 10.1016/j.ijhydene.2019.05.005
Heo, 2021, A mesoscopic digital twin that bridges length and time scales for control of additively manufactured metal microstructures, Journal of Physics: Materials, 4
Heo, 2011, A phase field study of strain energy effects on solute–grain boundary interactions, Acta Mater., 59, 7800, 10.1016/j.actamat.2011.08.045
Heo, 2015, Phase-field modeling of diffusional phase behaviors of solid surfaces: A case study of phase-separating LiXFePO4 electrode particles, Comput. Mater. Sci., 108, 323, 10.1016/j.commatsci.2015.03.020