Những cú nhảy thủy lực với số Froude đầu vào thấp: Các mẫu bề mặt không khí-nước và phân bố ngang của các thuộc tính dòng hai pha

Environmental Fluid Mechanics - Tập 22 Số 4 - Trang 789-818 - 2022
Davide Wüthrich1, Rui Shi2, Hubert Chanson2
1Department of Hydraulic Engineering, Delft University of Technology, 2628 CN, Delft, The Netherlands
2School of Civil Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia

Tóm tắt

Tóm tắt

Các cú nhảy thủy lực thường được sử dụng như những bộ tản nhiệt để đảm bảo hoạt động lâu dài của các công trình thủy lực. Do đó, việc hiểu biết toàn diện và sâu sắc về các đặc điểm chính của chúng là rất thiết yếu. Trong bối cảnh này, nghiên cứu hiện tại tập trung vào các cú nhảy thủy lực với số Froude thấp, tức là Fr1 = 2.1 và 2.4, tại số Reynolds tương đối cao: Re ~2 × 105. Các thử nghiệm thực nghiệm sử dụng sự kết hợp giữa các cảm biến phát hiện pha đầu dò hai đầu và camera video siêu tốc để cung cấp một mô tả toàn diện về các thuộc tính dòng chảy không khí-nước chủ yếu của cú nhảy thủy lực, bao gồm các đặc điểm dòng chảy bề mặt, tỷ lệ thể tích, tỷ lệ đếm bọt khí và vận tốc giao diện. Nghiên cứu hiện tại cũng tập trung vào các phân bố ngang của các thuộc tính dòng chảy không khí-nước, tức là trên chiều rộng của kênh, với các kết quả cho thấy giá trị tỷ lệ thể tích và tỷ lệ đếm bọt khí thấp hơn gần các bờ so với dữ liệu đường giữa kênh. Sự biến đổi không gian như vậy theo chiều ngang đặt ra câu hỏi liệu dữ liệu gần bờ bên có thể thực sự đại diện cho hành vi của phần lớn dòng chảy hay không, nâng cao vấn đề ảnh hưởng của bờ bên trong các kỹ thuật dựa trên hình ảnh. Nhìn chung, những phát hiện này cung cấp thông tin mới cho cả nhà nghiên cứu và thực hành để hiểu rõ hơn về các quá trình vật lý bên trong cú nhảy thủy lực với số Froude thấp, dẫn đến thiết kế tối ưu cho các công trình thủy lực.

Những điểm nổi bật của bài báo

Khảo sát thực nghiệm về các thuộc tính dòng chảy không khí-nước trong các cú nhảy thủy lực với số Froude thấp

Mô tả chi tiết về các đặc điểm chính của bề mặt không khí-nước trên cuộn sóng vỡ

Phân bố ngang của các thuộc tính dòng chảy không khí-nước qua chiều rộng của kênh và so sánh giữa đường giữa và bờ bên.

Từ khóa


Tài liệu tham khảo

Bakhmeteff BA (1932) Hydraulics of open channels, 1st edn. McGraw-Hill, New York, USA

Henderson FM (1966) Open channel flow. MacMillan Company, New York, USA

Lighthill J (1978) Waves in fluids. Cambridge University Press, Cambridge, UK

Bidone G (1819) Le Remou et sur la Propagation des Ondes ('The Jump and on the Wave Propagation.') Report to Académie Royale des Sciences de Turin, séance 12, XXV, pp. 21–112 and 4 plates (in French)

Darcy HPG and Bazin H (1865) Recherches Hydrauliques. ('Hydraulic Research.') Imprimerie Impériales, Paris, France, Parties 1ère et 2ème (in French)

Bélanger JB (1841) Notes sur l’Hydraulique (‘Notes on hydraulic engineering’.) Ecole Royale des Ponts et Chaussées. Paris, France, session 1841–1842:1–223 ((in French))

Boussinesq JV (1877) "Essai sur la Théorie des Eaux Courantes." ('Essay on the theory of water flow.') Mémoires présentés par divers savants à l'Académie des Sciences, Paris, France, 23(3), pp 1–680 (in French)

Hager WH (1992) Energy dissipators and hydraulic jump, 8th edn. Kluwer Academic Publ, Water Science and Technology Library, Dordrecht, The Netherlands

Chanson H (2007) Bubbly flow structure in hydraulic jump. Eur J Mech B/Fluids 26(3):367–384. https://doi.org/10.1016/j.euromechflu.2006.08.001

Chanson H (2009) Current knowledge in hydraulic jumps and related phenomena. a survey of experimental results. Eur J Mech B/Fluids 28(2):191–210. https://doi.org/10.1016/j.euromechflu.2008.06.004

Chanson H (2004) The hydraulics of open channel flow: an introduction. Butterworth-Heinemann, 2nd edn. Oxford, UK

Chanson H, Carvalho R (2015) Hydraulic jumps and stilling basins. In energy dissipation in hydraulic structures. CRC Press, Taylor and Francis Group, Leiden, The Netherlands, IAHR Monograph

USBR (1965) Design of small dams. Bureau of Reclamation, Denver CO, US Department of the Interior, USA

Chanson H, Montes JS (1995) Characteristics of undular hydraulic jumps. experimental apparatus and flow patterns. J Hydraul Eng ASCE 121(2):129–144. https://doi.org/10.1061/(ASCE)0733-9429(1995)121:2(129)

Ryabenko AA (1990) Conditions favorable to the existence of an undulating jump. Hydrotech Constr 24(12):762–770

Rajaratnam N (1962) An experimental study of air entrainment characteristics of the hydraulic jump. J Inst Eng India 42(7):247–273

Rajaratnam (1967) Hydraulic jumps. In: Advances in hydroscience, vol 4, Elsevier, pp 197–280

Ben Meftah M, De Serio F, Mossa M, and Pollio A (2007) Experimental observations of undular hydraulic jumps with very high aspect ratio. In: Proc. 32nd IAHR Biennial Congress, Venice, Italy

Lennon JM, Hill DF (2006) Particle image velocimetry measurements of undular and hydraulic jumps. J Hydraul Eng ASCE 132(12):1283–1294. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:12(1283)

Montes JS, Chanson H (1998) Characteristics of undular hydraulic jumps. results and calculations. J Hydraul Eng ASCE 124(2):192–205. https://doi.org/10.1061/(ASCE)0733-9429

Bung DB, Valero D (2016) Optical flow estimation in aerated flows. J Hydraul Res 54(5):575–580. https://doi.org/10.1080/00221686.2016.1173600

Kramer M, Valero D (2020) Turbulence and self-similarity in highly aerated shear flows: the stable hydraulic jump. Int J Multiph Flow 129:103316. https://doi.org/10.1016/j.ijmultiphaseflow.2020.103316

Shi R, Wüthrich D and Chanson H, (2021) Intrusive and non-intrusive air-water flow measurements in breaking jumps at Low Froude number and large reynolds number, Hydraulic Model Report, CH119/21. School of Civil Engineering, The University of Queensland. https://doi.org/10.14264/4a0c07f

Zhang G, Chanson H (2018) Application of local optical flow methods to high-velocity free-surface flows: validation and application to stepped chutes. Exp Thermal Fluid Sci 90:186–199. https://doi.org/10.1139/cjce-2016-0279

Wang H, Chanson H (2019) Characterisation of transverse turbulent motion in quasi-two-dimensional aerated flow: application of four-point air-water flow measurements in hydraulic jump. Exp Thermal Fluid Sci 100:222–232. https://doi.org/10.1016/j.expthermflusci.2018.09.004

Murzyn F, Mouaze D, Chaplin JR (2005) Optical fibre probe measurements of bubbly flow in hydraulic jumps. Int J Multiph Flow 31(1):141–154. https://doi.org/10.1016/j.ijmultiphaseflow.2004.09.004

Chachereau Y and Chanson H (2010) Free-surface turbulent fluctuations and air-water flow measurements in hydraulics jumps with small inflow Froude numbers. Hydraulic Model Report CH Series, CH78/10. School of Civil Engineering, The University of Queensland

Chachereau Y, Chanson H (2011) Bubbly flow measurements in hydraulic jumps with small inflow Froude numbers. Int J Multiph Flow 37(6):555–564. https://doi.org/10.1016/j.ijmultiphaseflow.2011.03.012

Wüthrich D, Shi R, Chanson H (2020) Physical Study of the 3-dimensional characteristics and free-surface properties of a breaking roller in bores and surges. Exp Therm Fluid Sci 112:109980. https://doi.org/10.1016/j.expthermflusci.2019.109980

Toombes, L., 2002. Experimental study of air-water flow properties on low gradient stepped cascades. PhD Thesis. The University of Queensland, Australia

Crowe C, Sommerfield M, Tsuji Y (1998) Multiphase flows with droplets and particles. CRC Press, Boca Raton, USA

Herringe RA, Davis MR (1976) Structural development of gas-liquid mixture flows. J Fluid Mech 73:97–123. https://doi.org/10.1017/S0022112076001274

Chanson H, Aoki S, Hoque A (2006) Bubble entrainment and dispersion in plunging jet flows: freshwater versus seawater. J Coastal Res 22(3):664–677. https://doi.org/10.2112/03-0112.1

Chanson H, Chachereau Y (2013) Scale effects affecting two-phase flow properties in hydraulic jump with small inflow froude number. Exp Thermal Fluid Sci 45:234–242. https://doi.org/10.1016/j.expthermflusci.2012.11.014

Estrella J, Wuthrich D, Chanson H (2022) Two-phase air-water flows in hydraulic jumps at low Froude number: similarity, scale effects and the need for field observations. Exp Therm Fluid Sci 130:110486. https://doi.org/10.1016/j.expthermflusci.2021.110486

Brocchini M, Peregrine DH (2001) The dynamics of strong turbulence at free surfaces. part 1. description. J Fluid Mech 449:225–254. https://doi.org/10.1017/S0022112001006012

Ervine DA, Falvey HT (1987) Behaviour of turbulent water jets in the atmosphere and in plunge pools. Proc Inst Civ Eng 83(1):295–314

Hino M (1961) On the mechanism of self-aerated flow on steep slope channels. Applications of the statistical theory of turbulence. In: Proc. 9th IAHR Congress, Dubrovnick, Yugoslavia, pp 123–132

Wüthrich D, Shi R, Chanson H (2021) Strong free-surface turbulence in breaking bores: a physical study on the free-surface dynamics and air–water interfacial features. J Fluid Mech. https://doi.org/10.1017/jfm.2021.614

Chanson H, Brattberg T (2000) Experimental study of the air-water shear flow in a hydraulic jump. Int J Multiph Flow 26(4):583–607. https://doi.org/10.1016/S0301-9322(99)00016-6

Murzyn F, Mouaze D, Chaplin JR (2007) Air-water interface dynamic and free surface features in hydraulic jumps. J Hydraul Res, IAHR 45(5):679–685. https://doi.org/10.1080/00221686.2007.9521804

Wang H, Chanson H (2015) Air entrainment and turbulent fluctuations in hydraulic jumps. Urban Water J 12(6):502–518. https://doi.org/10.1080/1573062X.2013.847464

Chanson H (2011) Bubbly two-phase flow in hydraulic jumps at large Froude numbers. J Hydraul Eng ASCE 137(4):451–460. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000323

Lubin P, Kimmoun O, Véron F, Glockner S (2019) Discussion on instabilities in breaking waves: vortices, air-entrainment and droplet generation. Eur J Mech B/Fluids 73:144–156. https://doi.org/10.1016/j.euromechflu.2018.05.006

Chanson H (1995) Hydraulic design of stepped cascades, channels, weirs and spillways. Pergamon, Oxford, UK

Hoyt JW, Sellin RHJ (1989) Hydraulic jump as “mixing layer.” J Hydraul Eng ASCE 115(12):1607–1614. https://doi.org/10.1061/(ASCE)0733-9429(1989)115:12(1607)

Brattberg T, Chanson H, Toombes L (1998) Experimental investigations of free-surface aeration in the developing flow of two-dimensional water jets. J Fluids Eng 120(4):738–744. https://doi.org/10.1115/1.2820731

Chanson H (1989) Study of air entrainment and aeration devices. J Hydraul Res 27(3):301–319. https://doi.org/10.1080/00221688909499166

Chanson H (1997) Air bubble entrainment in free-surface turbulent shear flows. Academic Press, London, UK

Chanson H, Toombes L (2002) Air-water flows down stepped chutes: turbulence and flow structure observations. Int J Multiph Flow 28:1737–1761. https://doi.org/10.1016/S0301-9322(02)00089-7

Felder S, Pfister M (2017) Comparative analyses of phase-detective intrusive probes in high-velocity air–water flows. Int J Multiph Flow 90:88–101. https://doi.org/10.1016/j.ijmultiphaseflow.2016.12.009

Wüthrich, D., Shi, R., Wang, H., and Chanson, H. (2020a). Three-dimensional air-water flow properties of a hydraulic jump with low Froude numbers and relatively high Reynolds numbers 8th IAHR International Symposium on Hydraulic Structures ISHS2020, 12–15 May 2020, Santiago, Chile.

Montano L, Felder S (2020) An experimental study of air–water flows in hydraulic jumps on flat slopes. J Hydraul Res 58(5):767–777. https://doi.org/10.1080/00221686.2019.1671512

Cummings PD (1996) Aeration due to breaking waves. Ph.D. thesis, Dept. of Civil Engrg., University of Queensland, Australia

Leng X, Chanson H (2019) Air-water interaction and characteristics in breaking bores. Int J Multiph Flow 120:103101. https://doi.org/10.1016/j.ijmultiphaseflow.2019.103101

Murzyn F, Chanson H (2009) Free-surface fluctuations in hydraulic jumps: experimental observations. Exp Thermal Fluid Sci 33(7):1055–1064. https://doi.org/10.1016/j.expthermflusci.2009.06.003

Valle BL and Pasternack GB (2006) Air concentrations of submerged and unsubmerged hydraulic jumps in a bedrock step-pool channel. J Geophys Res. 111:F03016. https://doi.org/10.1029/2004JF000140

Wang H (2014) Turbulence and air entrainment in hydraulic jumps. Ph.D. thesis, School of Civil Engineering, The University of Queensland, Brisbane, Australia, 341 pages and Digital appendices