Hydration of calcium sulphoaluminate clinker with additions of different calcium sulphate sources

Stefano Allevi1, Maurizio Marchi1, Fabrizia Douglas Scotti2, Sabrina Bertini3, Cesare Cosentino3
1CTG-Italcementi Group, Via Camozzi 124, 24121, Bergamo, Italy
2CNR-Istituto per la Dinamica dei Processi Ambientali, Via Bianco 9, 20131, Milano, Italy
3Istituto di Ricerche Chimiche e Biochimiche “G. Ronzoni”, Via G. Colombo 81, 20133, Milano, Italy

Tóm tắt

Từ khóa


Tài liệu tham khảo

International Energy Agency World Business Council for Sustainable Development, Cement Technology Roadmap (2009). www.iea.org/publications/freepublications/.../Cement roadmap.pdf . Accessed 7 Jan 2015

Gartner EM (2004) Industrially interesting approaches to “low-CO2” cements. Cem Concr Res 34(9):1489–1498

Damtoft JS, Lukasik J, Herfort D, Sorrentino D, Gartner EM (2008) Sustainable development and climate change initiatives. Cem Concr Res 38(2):115–127

Schneider M, Remer M, Tschudin T, Bolio H, Gartner EM (2011) Sustainable cement production-present and future. Cem Concr Res 41:642–650

Klein A, Troxell GE (1958) Studies of calcium sulphoaluminate admixtures for expansive cements. ASTM Proc 58:988–1008

Nakamura T, Sudoh G, Akaiwa S (1968) Mineralogical composition of expansive cement clinker rich in SiO2 and its expansibility. Proceedings of 5th Int Congr Chem Cem Tokyo, Japan , vol IV: 351–365

Budnikov PB, Kravchenko IV (1968) Expansive cements. Proceedings of 5th Int Congr Chem Cem, Tokyo, Japan, vol IV: 351–365

Michel M, Georgin JF, Ambroise J, Péra J (2011) The influence of gypsum ratio on the mechanical performance of slag cement accelerated by calcium sulfoaluminate cement. Constr Build Mater 25(3):1298–1304

Ioannou S, Lucía ReigL, Paine K, Quillin K (2014) Properties of a ternary calcium sulfoaluminate-calcium sulfate-fly ash cement. Cem Concr Res 56:75–83

Telesca A, Marroccoli M, Pace ML, Tomasulo M, Valenti GL, Monteiro PJM (2014) A hydration study of various calcium sulfoaluminate cements. Cement Concr Compos 53:224–232

Metha PK (1980) Investigations on energy-saving cements. World Cement Technol 11(4):166–177

Beretka J, Santoro L, Sherman N, Valenti GL Synthesis and properties of low energy cements based on C4A3$. Proceedings of 9th int congr chem cem, New Dehli, India, vol III: 195–200

Berekta J, De Vito B, Santoro L, Sherman N, Valenti GL (1993) Hydraulic behavior of calcium sulphoaluminate-based cements derived from industrial process wastes. Cem Concr Res 23(5):1205–1214

Beretka J, Cioffi R, Marroccoli M, Valenti GL (1996) Energy-saving cements obtained from chemical gypsum and other industrial wastes. Waste Manag 16(1–3):231–235

Taylor HFW (1997) Cement chemistry, 2nd edn. Thomas Telford, London

Winnefeld F, Lothenbach B (2010) Hydration of calcium sulphoaluminate cements—experimental findings and thermodynamic modelling. Cem Concr Res 40:1239–1247

Lan W, Glasser FP (1996) Hydration of calcium sulphoaluminate cements. Adv Cem Res 8:127–134

Zhang L, Glasser FP (2002) Hydration of calcium sulphoaluminate cement at less than 24h. Adv Cem Res 14(4):141–155

Chen IA, Hargis CW, Juenger MCG (2012) Understanding expansion in calcium sulphoaluminate-belite cements. Cem Concr Res 42:51–60

Valenti GL, Marroccoli M, Pace ML, Telesca A (2012) Discussion of the paper “understanding expansion in calcium sulfolaluminate-belite cements” by I.A. Chen. Cem Concr Res 42:1555–1559

Winnefeld F, Barlag S (2009) Influence of calcium sulphate and calcium hydroxide on the hydration of calcium sulphoaluminate clinker. Zement Kalk Gips Int 12:42–53

Marchi M, Costa U (2011) Influence of the calcium sulphate and w/c ratio on the hydration of calcium sulfoaluminate cement. Proceedings of 13th int congr chem cem, Madrid 191

Le Saout G, Lothenbach B, Hori A, Higuchi T, Winnefeld F (2013) Hydration of Portland cement with additions of calcium sulfoaluminates. Cem Concr Res 43:81–94

Hargis CW, Kirchheim AP, Monteiro PJM, Gartner EM (2013) Early age hydration of calcium sulfoaluminate (synthetic ye’elimite,) in the presence of gypsum and varying amounts of calcium hydroxide. Cem Concr Res 48:105–115

Pelletier L, Winnefeld F, Lothenbach B (2010) The ternary systems Portland cement-calcium sulphoaluminate clinker-anhydrite: hydration mechanism and mortar properties. Cem Concr Res 32:497–507

Pelletier L, Winnefeld F, Lothenbach B, Le Saout G (2011) Influence of the calcium sulphate source on the hydration mechanism of Portland cement-calcium sulphoaluminate clinker-calcium sulphate binders. Cem Concr Comp 33:551–561

MacKenzie KJD, Smith ME (2002) Multinuclear solid-state NMR of inorganic materials. Pergamon Press, Oxford

Hanna JV, Smith ME (2010) Recent technique developments and applications of solid state NMR in characterizing inorganic materials. Solid State Nucl Magn Reson 38(1):1–18

Andersen MD, Jakobsen HJ, Skibsted J (2006) A new aluminium-hydrate species in hydrated Portland cements characterized by 27Al and 29Si MAS NMR spectroscopy. Cem Concr Res 36:3–17

Andersen MD, Jakobsen HJ, Skibsted J (2004) Characterization of white Portland cement hydration and the C-S-H structure in the presence of sodium aluminate by 27Al and 29Si MAS NMR. Cem Concr Res 34:857–868

Parry-Jones G, Al-Tayyib AJ, Al-Dulaijan SU, Al-Mana AI (1989) 29Si MAS NMR hydration and compressive strength study in cement paste. Cem Concr Res 19:228–234

Brunet F, Charpentier T, Chao CN, Peycelon H, Nonat A (2010) Characterization by solid-state NMR and selective dissolution techniques of anhydrous and hydrated CEM V cement pastes. Cem Concr Res 40:208–219

Skibsted J, Henderson E, Jakobsen HJ (1993) Characterization of calcium aluminate phase in cements by 27Al MAS NMR spectroscopy. Inorg Chem 32:1013–1027

Calos NJ, Kennard CHL, Whittaker AK, Davis RL (1995) Structure of calcium aluminate sulfate Ca4Al6O16S. J Solid State Chem 119:1–7

Song JT, Young JF (2002) Direct synthesis and hydration of calcium aluminosulfate (Ca4Al6O16S). J Am Ceram Soc 85:535–539

Goldman M, Grandinetti PJ, Llor A, Olejniczak Z, Sachleben JR, Zwanziger JW (1992) Theoretical aspects of higher-order truncations in solid-state nuclear magnetic resonance. J Chem Phys 97:8947–8960

Amoureux JP, Fernandez C (1996) QUASAR—solid state NMR simulation for quadrupolar nuclei. University of Lille, France

Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

Rawal A, Smith BJ, Athens GL, Edwards CL, Roberts L, Gupta V, Chmelka BF (2010) Molecular silicate and aluminate species in anhydrous and hydrated cements. J Am Chem Soc 132:7321–7337

Mumme WG, Hill RJ, Bushnell-Wye G, Segnit ER (1995) Rietveld crystal structure refinements, crystal chemistry and calculated powder diffraction data for the polymorphs of dicalcium silicate and related phases. Neues Jahrbuch fuer Mineralogie. Abhandlungen 169(1):35–68

McCusker LB, Von Dreele RB, Cox DE, Louër D, Scardi P (1999) Rietveld refinement guidelines. J Appl Crystallogr 32:36–50

Bruker AXS, TOPAS  V 2.0 (2003) General profile and structure analysis software for power diffraction data, User manual, Bruker AXS, Karlsruhe, Germany

Jost KH, Ziemer B, Seydel R (1977) Redetermination of the structure of β-dicalcium silicate. Acta Crystallogr B 33:1696–1700

Pedersen P, Semmingsen D (1982) Neutron diffraction refinement of the structure of gypsum, CaSO4.2H2O. Acta Crystallogr B 38:1074–1077

Motzet H, Poellmann H (1998) Quantitative phase analysis of high alumina cements. Proceedings of the 20th international conference on cement microscopy, 187–206

Hawthorne FC, Ferguson RB (1975) Anhydrous sulphates. II. Refinement of the crystal structure of anhydrite. Can Mineral 13:289–292

Goetz-Neunhoeffer F, Neubauer J (2006) Refined ettringite (Ca6Al2(SO4)3(OH)12·26H2O) structure for quantitative X-ray diffraction analysis. Powder Diffr 21(1):4–11

Ramachandran VS, Paroli RM, Beaudoin JJ, Delgado AH (2002) Handbook of thermal analysis of construction materials. William Andrew, New York

Kloprogge JT, Ruan HD, Frost RL (2002) Thermal decomposition of bauxite minerals: infrared emission spectroscopy of gibbsite, boehmite and diaspore. J Mater Sci 37:1121–1129