Hydrates of active pharmaceutical ingredients: A 35Cl and 2H solid-state NMR and DFT study

Solid State Nuclear Magnetic Resonance - Tập 122 - Trang 101837 - 2022
Sean T. Holmes1,2, Cameron S. Vojvodin1,2, Natan Veinberg3, Emilia M. Iacobelli3, David A. Hirsh3, Robert W. Schurko1,2
1Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL 32306, USA
2National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA
3Department of Chemistry & Biochemistry, University of Windsor, Windsor, ON, N9B 3P4, USA

Tài liệu tham khảo

Datta, 2004, Crystal structures of drugs: advances in determination, prediction and engineering, Nat. Rev. Drug Discov., 3, 42, 10.1038/nrd1280 Healy, 2017, Pharmaceutical solvates, hydrates and amorphous forms: a special emphasis on cocrystals, Adv. Drug Deliv. Rev., 117, 25, 10.1016/j.addr.2017.03.002 Pindelska, 2017, Pharmaceutical cocrystals, salts and polymorphs: advanced characterization techniques, Adv. Drug Deliv. Rev., 117, 111, 10.1016/j.addr.2017.09.014 Karpinski, 2006, Polymorphism of active pharmaceutical ingredients, Chem. Eng. Technol., 29, 233, 10.1002/ceat.200500397 Khankari, 1995, Pharmaceutical hydrates, Thermochim. Acta, 248, 61, 10.1016/0040-6031(94)01952-D Byrn, 2017, Solvates and hydrates, 38 Jurczak, 2020, Pharmaceutical hydrates analysis — overview of methods and recent advances, Pharmaceutics, 12, 959, 10.3390/pharmaceutics12100959 Griesser, 2006, The importance of solvates, 211 Brittain, 1999, Structural aspects of solvatomorphic systems, 233 Hossain Mithu, 2021, Advanced methodologies for pharmaceutical salt synthesis, Cryst. Growth Des., 21, 1358, 10.1021/acs.cgd.0c01427 Chakravarty, 2021, The importance of water-solid interactions in small molecule drug development: an industry perspective, Trends Anal. Chem., 140, 10.1016/j.trac.2021.116276 Chakravarty, 2010, Insights into the dehydration behavior of thiamine hydrochloride (vitamin B1) hydrates: part I, J. Pharm. Sci., 99, 816, 10.1002/jps.21876 Chakravarty, 2010, Insights into the dehydration behavior of thiamine hydrochloride (vitamin B1) hydrates: part II, J. Pharm. Sci., 99, 1882, 10.1002/jps.21968 Stephenson, 1998, Formation of isomorphic desolvates: creating a molecular vacuum, J. Pharm. Sci., 87, 536, 10.1021/js970449z Werner, 2020, Data mining the Cambridge Structural Database for hydrate–anhydrate pairs with SMILES strings, CrystEngComm, 22, 7290, 10.1039/D0CE00273A Klitou, 2019, Synthonic modeling of quercetin and its hydrates: explaining crystallization behavior in terms of molecular conformation and crystal packing, Cryst. Growth Des., 19, 4774, 10.1021/acs.cgd.9b00650 Bērziņš, 2018, Detailed analysis of packing efficiency allows rationalization of solvate formation propensity for selected structurally similar organic molecules, Cryst. Growth Des., 18, 2040, 10.1021/acs.cgd.7b01457 Clarke, 2010, Structure−stability relationships in cocrystal hydrates: does the promiscuity of water make crystalline hydrates the nemesis of crystal engineering?, Cryst. Growth Des., 10, 2152, 10.1021/cg901345u Tilbury, 2018, Combining theoretical and data-driven approaches to predict drug substance hydrate formation, Cryst. Growth Des., 18, 57, 10.1021/acs.cgd.7b00517 Takieddin, 2016, Prediction of hydrate and solvate formation using statistical models, Cryst. Growth Des., 16, 70, 10.1021/acs.cgd.5b00966 Bajpai, 2016, Towards an understanding of the propensity for crystalline hydrate formation by molecular compounds, IUCrJ, 3, 430, 10.1107/S2052252516015633 Sanii, 2021, Toward an understanding of the propensity for crystalline hydrate formation by molecular compounds. part 2, Cryst. Growth Des., 21, 4927, 10.1021/acs.cgd.1c00353 Braun, 2020, The eight hydrates of strychnine sulfate, Cryst. Growth Des., 20, 6069, 10.1021/acs.cgd.0c00777 Braun, 2019, Inconvenient truths about solid form landscapes revealed in the polymorphs and hydrates of gandotinib, Cryst. Growth Des., 19, 2947, 10.1021/acs.cgd.9b00162 Stahly, 2007, Diversity in single- and multiple-component crystals. the search for and prevalence of polymorphs and cocrystals, Cryst. Growth Des., 7, 1007, 10.1021/cg060838j Stephenson, 1997, Solid-state investigations of erythromycin a dihydrate: structure, NMR spectroscopy, and hygroscopicity, J. Pharm. Sci., 86, 1239, 10.1021/js9701667 Reutzel, 1998, Origins of the unusual hygroscopicity observed in LY297802 tartrate, J. Pharm. Sci., 87, 1568, 10.1021/js9801790 Othman, 2007, Structural study of polymorphs and solvates of finasteride, J. Pharm. Sci., 96, 1380, 10.1002/jps.20940 Gorman, 2012, Understanding the dehydration of levofloxacin hemihydrate, J. Pharm. Sci., 101, 3319, 10.1002/jps.23200 Te, 2003, X-ray diffraction and solid-state NMR investigation of the single-crystal to single-crystal dehydration of thiamine hydrochloride monohydrate, Cryst. Growth Des., 3, 997, 10.1021/cg0340749 Wang, 2012, Solid-state NMR studies of form I of atorvastatin calcium, J. Phys. Chem. B, 116, 3641, 10.1021/jp212074a Holmes, 2020, Chemical shift tensors of cimetidine form A modeled with density functional theory calculations: implications for NMR crystallography, J. Phys. Chem. A, 124, 3109, 10.1021/acs.jpca.0c00421 Namespetra, 2016, 35Cl solid-state NMR spectroscopy of HCl pharmaceuticals and their polymorphs in bulk and dosage forms, CrystEngComm, 18, 6213, 10.1039/C6CE01069E Holmes, 2019, A new NMR crystallographic approach to reveal the calcium local structure of atorvastatin calcium, Phys. Chem. Chem. Phys., 21, 6319, 10.1039/C8CP07673A Burgess, 2012, Sodium-23 solid-state nuclear magnetic resonance of commercial sodium naproxen and its solvates, J. Pharm. Sci., 101, 2930, 10.1002/jps.23196 Bai, 2020, High-resolution 13C and 43Ca solid-state NMR and computational studies of the ethylene glycol solvate of atorvastatin calcium, Magn. Reson. Chem., 58, 1010, 10.1002/mrc.4937 Hamaed, 2008, Application of solid-state 35Cl NMR to the structural characterization of hydrochloride pharmaceuticals and their polymorphs, J. Am. Chem. Soc., 130, 11056, 10.1021/ja802486q Redman-Furey, 2005, Structural and analytical characterization of three hydrates and an anhydrate form of risedronate, J. Pharm. Sci., 94, 893, 10.1002/jps.20308 Lester, 2006, Dehydration of risedronate hemi-pentahydrate: analytical and physical characterization, J. Pharm. Sci., 95, 2631, 10.1002/jps.20662 Burgess, 2012, Sodium-23 solid-state nuclear magnetic resonance of commercial sodium naproxen and its solvates, J. Pharm. Sci., 101, 2930, 10.1002/jps.23196 Bonhomme, 2012, 87Sr solid-state NMR as a structurally sensitive tool for the investigation of materials: antiosteoporotic pharmaceuticals and bioactive glasses, J. Am. Chem. Soc., 134, 12611, 10.1021/ja303505g Paulekuhn, 2007, Trends in active pharmaceutical ingredient salt selection based on analysis of the orange book database, J. Med. Chem., 50, 6665, 10.1021/jm701032y Desiraju, 1999 Steiner, 1998, Hydrogen-bond distances to halide ions in organic and organometallic crystal structures: up-to-date database study, Acta Crystallogr. B, 54, 456, 10.1107/S0108768197014821 Hildebrand, 2014, 35Cl solid-state NMR of HCl salts of active pharmaceutical ingredients: structural prediction, spectral fingerprinting and polymorph recognition, CrystEngComm, 16, 7334, 10.1039/C4CE00544A Peach, 2018, Mechanochemical syntheses and 35Cl solid-state NMR characterization of fluoxetine HCl cocrystals, CrystEngComm, 20, 2780, 10.1039/C8CE00378E Vogt, 2014, Solid-state NMR analysis of a complex crystalline phase of ronacaleret hydrochloride, J. Phys. Chem. B, 118, 10266, 10.1021/jp505061j Hirsh, 2016, 35Cl dynamic nuclear polarization solid-state NMR of active pharmaceutical ingredients, Phys. Chem. Chem. Phys., 18, 25893, 10.1039/C6CP04353D Vogt, 2013, Solid-state NMR analysis of a boron-containing pharmaceutical hydrochloride salt, J. Pharm. Sci., 102, 3705, 10.1002/jps.23679 Hirsh, 2019, In situ characterization of waters of hydration in a variable-hydrate active pharmaceutical ingredient using 35Cl solid-state NMR and X-ray diffraction, Cryst. Growth Des., 19, 7349, 10.1021/acs.cgd.9b01218 Hirsh, 2018, Quantifying disproportionation in pharmaceutical formulations with 35Cl solid-state NMR, Mol. Pharm., 15, 4038, 10.1021/acs.molpharmaceut.8b00470 Holmes, 2022, Nutraceuticals in bulk and dosage forms: analysis by 35Cl and 14N solid-state NMR and DFT calculations, Mol. Pharm., 19, 440, 10.1021/acs.molpharmaceut.1c00708 Iuga, 2021, 35Cl-1H heteronuclear correlation MAS NMR experiments for probing pharmaceutical salts, Magn. Reson. Chem., 59, 1089, 10.1002/mrc.5188 Pandey, 2016, Two-dimensional proton-detected 35Cl/1H correlation solid-state NMR experiment under fast magic angle sample spinning: application to pharmaceutical compounds, Phys. Chem. Chem. Phys., 18, 6209, 10.1039/C5CP06042G Wijesekara, 2020, Fast acquisition of proton-detected HETCOR solid-state NMR spectra of quadrupolar nuclei and rapid measurement of NH bond lengths by frequency selective HMQC and RESPDOR pulse sequences, Chem. Eur J., 26, 7881, 10.1002/chem.202000390 Bryce, 2001, High-field chlorine NMR spectroscopy of solid organic hydrochloride salts: a sensitive probe of hydrogen bonding environments, J. Phys. Chem. A, 105, 10413, 10.1021/jp011962a Gervais, 2005, Combined first-principles computational and experimental multinuclear solid-state NMR investigation of amino acids, J. Phys. Chem. A, 109, 6960, 10.1021/jp0513925 Bryce, 2006, Solid-state 35/37Cl NMR spectroscopy of hydrochloride salts of amino acids implicated in chloride ion transport channel selectivity: opportunities at 900 MHz, J. Am. Chem. Soc., 128, 2121, 10.1021/ja057253i Chapman, 2007, A high-field solid-state 35/37Cl NMR and quantum chemical investigation of the chlorine quadrupolar and chemical shift tensors in amino acid hydrochlorides, Phys. Chem. Chem. Phys., 9, 6219, 10.1039/b712688c Bryce, 2006, Chlorine-35/37 NMR spectroscopy of solid amino acid hydrochlorides: refinement of hydrogen-bonded proton positions using experiment and theory, J. Phys. Chem. B, 110, 26461, 10.1021/jp065878c Socha, 2017, Exploring systematic discrepancies in DFT calculations of chlorine nuclear quadrupole couplings, J. Phys. Chem. A, 121, 4103, 10.1021/acs.jpca.7b02810 Attrell, 2012, Weak halogen bonding in solid haloanilinium halides probed directly via chlorine-35, bromine-81, and iodine-127 NMR spectroscopy, Cryst. Growth Des., 12, 1641, 10.1021/cg201683p Penner, 2011, A multinuclear NMR and quantum chemical study of solid trimethylammonium chloride, Can. J. Chem., 89, 1036, 10.1139/v11-034 Chapman, 2011, A solid-state 35/37Cl NMR study of a chloride ion receptor and a GIPAW-DFT study of chlorine NMR interaction tensors in organic hydrochlorides, Can. J. Chem., 89, 822, 10.1139/v10-177 Burgess, 2012, A combined solid-state NMR and X-ray crystallography study of the bromide ion environments in triphenylphosphonium bromides, Chem. Eur J., 18, 5748, 10.1002/chem.201103478 Viger-Gravel, 2014, Direct investigation of halogen bonds by solid-state multinuclear magnetic resonance spectroscopy and molecular orbital analysis, J. Am. Chem. Soc., 136, 6929, 10.1021/ja5013239 Vojvodin, 2022, Multi-component crystals containing urea: mechanochemical synthesis and characterization by 35Cl solid-state NMR spectroscopy and DFT calculations, CrystEngComm, 10.1039/D1CE01610E Azaïs, 2003, 35Cl quadrupolar constants obtained by solid-state NMR: study of chlorinated Al–O–P clusters, involving OH···Cl hydrogen bonds, Solid State Nucl. Magn. Reson., 23, 14, 10.1016/S0926-2040(02)00012-7 Holmes, 2018, Refining crystal structures with quadrupolar NMR and dispersion-corrected density functional theory, J. Phys. Chem. C, 122, 1809, 10.1021/acs.jpcc.7b12314 Holmes, 2020, Dispersion-corrected DFT methods for applications in nuclear magnetic resonance crystallography, J. Phys. Chem. A, 124, 10312, 10.1021/acs.jpca.0c06372 Holmes, 2017, Semi-empirical refinements of crystal structures using 17O quadrupolar-coupling tensors, J. Chem. Phys., 146, 10.1063/1.4975170 Grimme, 2006, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem., 27, 1787, 10.1002/jcc.20495 Vogt, 2006, Physical, crystallographic, and spectroscopic characterization of a crystalline pharmaceutical hydrate: understanding the role of water, Cryst. Growth Des., 6, 2333, 10.1021/cg060324k Abraham, 2016, Characterising the role of water in sildenafil citrate by NMR crystallography, CrystEngComm, 18, 1054, 10.1039/C5CE02234G Vogt, 2010, Isomorphism, disorder, and hydration in the crystal structures of racemic and single-enantiomer carvedilol phosphate, Cryst. Growth Des., 10, 2713, 10.1021/cg100209v Vogt, 2006, A study of variable hydration states in topotecan hydrochloride, J. Pharm. Biomed. Anal., 40, 1080, 10.1016/j.jpba.2005.08.032 Keeler, 2019, High-resolution 17O NMR spectroscopy of structural water, J. Phys. Chem. B, 123, 3061, 10.1021/acs.jpcb.9b02277 Zhang, 1996, 17O NMR and crystalline hydrates, Solid State Nucl. Magn. Reson., 7, 147, 10.1016/S0926-2040(96)01258-1 Pines, 1972, Proton-enhanced nuclear induction spectroscopy. 13C chemical shielding anisotropy in some organic solids, Chem. Phys. Lett., 15, 10.1016/0009-2614(72)80191-X Schaefer, 1976, Carbon-13 nuclear magnetic resonance of polymers spinning at the magic angle, J. Am. Chem. Soc., 98, 1031, 10.1021/ja00420a036 Peersen, 1993, Variable-amplitude cross-polarization MAS NMR, J. Magn. Reson., Ser. A, 104, 334, 10.1006/jmra.1993.1231 Metz, 1994, Ramped-amplitude pross Polarization in magic-angle-spinning NMR, J. Magn. Reson., Ser. A, 110, 219, 10.1006/jmra.1994.1208 Morcombe, 2003, Chemical shift referencing in MAS solid state NMR, J. Magn. Reson., 162, 479, 10.1016/S1090-7807(03)00082-X O'Dell, 2009, Acquisition of ultra-wideline NMR spectra from quadrupolar nuclei by frequency stepped WURST–QCPMG, Chem. Phys. Lett., 468, 330, 10.1016/j.cplett.2008.12.044 O'Dell, 2008, QCPMG using adiabatic pulses for faster acquisition of ultra-wideline NMR spectra, Chem. Phys. Lett., 464, 97, 10.1016/j.cplett.2008.08.095 Bhattacharyya, 2007, Quadrupolar nuclear magnetic resonance spectroscopy in solids using frequency-swept echoing pulses, J. Chem. Phys., 127, 10.1063/1.2793783 Kupce, 1995, Adiabatic pulses for wideband inversion and broadband decoupling, J. Magn. Reson., 115, 273, 10.1006/jmra.1995.1179 Hahn, 1950, Spin echoes, Phys. Rev., 80, 580, 10.1103/PhysRev.80.580 Kentgens, 1997, A practical guide to solid-state NMR of half-integer quadrupolar nuclei with some applications to disordered systems, Geoderma, 80, 271, 10.1016/S0016-7061(97)00056-6 Bryce, 2006, Solid-state NMR spectroscopy of the quadrupolar halogens: chlorine-35/37, bromine-79/81, and iodine-127, Magn. Reson. Chem., 44, 409, 10.1002/mrc.1741 van Meerten, 2019, A cross-platform open-source NMR data processing and fitting application, J. Magn. Reson., 301, 56, 10.1016/j.jmr.2019.02.006 Adiga, 2007, EFGShield — a program for parsing and summarizing the results of electric field gradient and nuclear magnetic shielding tensor calculations, Can. J. Chem., 85, 496, 10.1139/v07-069 Altenhof, 2020, Practical aspects of recording ultra-wideline NMR patterns under magic-angle spinning conditions, J. Phys. Chem. C, 124, 14730, 10.1021/acs.jpcc.0c04510 Vold, 2009, Effects of jump dynamics on solid state nuclear magnetic resonance line shapes and spin relaxation times, J. Magn. Reson., 198, 57, 10.1016/j.jmr.2009.01.008 Clark, 2005, First principles methods using CASTEP, Z. Kristallogr., 220, 567, 10.1524/zkri.220.5.567.65075 James, 1974, The crystal and molecular structure of the antihistaminic drug triprolidine hydrochloride monohydrate [trans-1-(p-tolyl)-1-(2-pyridyl)-3-(1-pyrrolidino)-prop-1-ene], Can. J. Chem., 52, 1880, 10.1139/v74-268 Shibata, 1983, Structure of N-cyano-N'-methyl-N''-(2-{[(5-methyl-1H-imidazole-4-yl)methyl]thio}ethyl)guanidine (cimetidine) monohydrochloride monohydrate, C10H17N6S+.Cl-.H2O, Acta Crystallogr. C, 39, 1255, 10.1107/S0108270183008124 Watts, 2016, Combining the advantages of powder X-ray diffraction and NMR crystallography in structure determination of the pharmaceutical material cimetidine hydrochloride, Cryst. Growth Des., 16, 1798, 10.1021/acs.cgd.6b00016 Dow, 1970, Refinement of the structure of arginine hydrochloride monohydrate, Acta Crystallogr. B, 26, 1662, 10.1107/S0567740870004697 Μazumdar, 1969, The crystal structure of L-arginine hydrochloride, Z. Kristallogr., 130, 328, 10.1524/zkri.1969.130.1-6.328 Suh, 1982, The crystal and molecular structure of thiamine dichloride monohydrate, J. Kor. Phys. Soc., 15 Hammer, 1999, Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals, Phys. Rev. B, 59, 7413, 10.1103/PhysRevB.59.7413 Yates, 2007, Calculation of NMR chemical shifts for extended systems using ultrasoft pseudopotentials, Phys. Rev. B, 76, 10.1103/PhysRevB.76.024401 Monkhorst, 1976, Special points for Brillouin-zone integrations, Phys. Rev. B, 13, 5188, 10.1103/PhysRevB.13.5188 Pfrommer, 1997, Relaxation of crystals with the quasi-Newton method, J. Comput. Phys., 131, 233, 10.1006/jcph.1996.5612 McNellis, 2009, Azobenzene at coinage metal surfaces: role of dispersive van der Waals interactions, Phys. Rev. B, 80, 10.1103/PhysRevB.80.205414 Pickard, 2001, All-electron magnetic response with pseudopotentials: NMR chemical shifts, Phys. Rev. B, 63, 10.1103/PhysRevB.63.245101 Profeta, 2003, Accurate first principles prediction of 17O NMR parameters in SiO2: assignment of the zeolite ferrierite spectrum, J. Am. Chem. Soc., 125, 541, 10.1021/ja027124r Bonhomme, 2012, First-principles calculation of NMR parameters using the gauge including projector augmented wave method: a chemist's point of view, Chem. Rev., 112, 5733, 10.1021/cr300108a O'Dell, 2010, Optimized excitation pulses for the acquisition of static NMR powder patterns from half-integer quadrupolar nuclei, J. Magn. Reson., 203, 156, 10.1016/j.jmr.2009.12.016 O'Dell, 2012, Multinuclear solid-state nuclear magnetic resonance and density functional theory characterization of interaction tensors in taurine, J. Phys. Chem. A, 116, 1008, 10.1021/jp210844t Altenhof, 2019, On the use of frequency-swept pulses and pulses designed with optimal control theory for the acquisition of ultra-wideline NMR spectra, J. Magn. Reson., 309, 10.1016/j.jmr.2019.106612 Koppe, 2020, Minimizing lineshape distortions in static ultra-wideline nuclear magnetic resonance of half-integer spin quadrupolar nuclei, J. Phys. Chem. A, 124, 4314, 10.1021/acs.jpca.0c03658 Baltisberger, 2012, Phase incremented echo train acquisition in NMR spectroscopy, J. Chem. Phys., 136, 10.1063/1.4728105 Pyykkö, 2018, Year-2017 nuclear quadrupole moments, Mol. Phys., 116, 1328, 10.1080/00268976.2018.1426131 Autschbach, 2010, Analysis of electric field gradient tensors at quadrupolar nuclei in common structural motifs, Concepts Magn. Reson., 36A, 84, 10.1002/cmr.a.20155 Chandrakumar, 1996, NMR of spin-1 systems in the solid state, 10.1007/978-3-642-61089-9_3 Maruyoshi, 2017, Assessing the detection limit of a minority solid-state form of a pharmaceutical by 1H double-quantum magic-angle spinning nuclear magnetic resonance spectroscopy, J. Pharm. Sci., 106, 3372, 10.1016/j.xphs.2017.07.014 Barnes, 1980, vol. 1, 335 Weiss, 1980, vol. 4, 149 Larsson, 1991, Reorientation of water molecules in solid hydrates. correlation with spectroscopic and structural data, J. Chem. Soc., Faraday Trans., 87, 1193, 10.1039/ft9918701193 Walder, 2018, Hydrogen motional disorder in crystalline iron group chloride dihydrates, J. Chem. Phys., 149, 10.1063/1.5037151 Tobar, 2020, Water dynamics in deuterated gypsum, CaSO4·2D2O, investigated by solid state deuterium NMR, J. Magn. Reson., 310, 10.1016/j.jmr.2019.106640 Ketudat, 1957, Electric quadrupole interactions of deuterons and molecular motion in Li2SO4·D2O, J. Chem. Phys., 26, 708, 10.1063/1.1743374 McGrath, 1967, Deuteron magnetic resonance study of potassium oxalate monodeuterate, J. Chem. Phys., 46, 1824, 10.1063/1.1840941 Long, 1997, 2H NMR line shapes and spin−lattice relaxation in Ba(ClO3)2·2H2O, J. Phys. Chem. A, 101, 988, 10.1021/jp962116g Sapiga, 2001, NMR investigation of natrolite structure, Cryst. Res. Technol., 36, 875, 10.1002/1521-4079(200110)36:8/10<875::AID-CRAT875>3.0.CO;2-# Frydman, 1995, Isotropic spectra of half-integer quadrupolar spins from bidimensional magic-angle spinning NMR, J. Am. Chem. Soc., 117, 5367, 10.1021/ja00124a023 Medek, 1995, Multiple-quantum magic-angle spinning NMR: a new method for the study of quadrupolar nuclei in solids, J. Am. Chem. Soc., 117, 12779, 10.1021/ja00156a015 Paruzzo, 2018, Chemical shifts in molecular solids by machine learning, Nat. Commun., 9, 4501, 10.1038/s41467-018-06972-x Cordova, 2021, Bayesian probabilistic assignment of chemical shifts in organic solids, Sci. Adv., 7, 10.1126/sciadv.abk2341