Hydrates of active pharmaceutical ingredients: A 35Cl and 2H solid-state NMR and DFT study
Tài liệu tham khảo
Datta, 2004, Crystal structures of drugs: advances in determination, prediction and engineering, Nat. Rev. Drug Discov., 3, 42, 10.1038/nrd1280
Healy, 2017, Pharmaceutical solvates, hydrates and amorphous forms: a special emphasis on cocrystals, Adv. Drug Deliv. Rev., 117, 25, 10.1016/j.addr.2017.03.002
Pindelska, 2017, Pharmaceutical cocrystals, salts and polymorphs: advanced characterization techniques, Adv. Drug Deliv. Rev., 117, 111, 10.1016/j.addr.2017.09.014
Karpinski, 2006, Polymorphism of active pharmaceutical ingredients, Chem. Eng. Technol., 29, 233, 10.1002/ceat.200500397
Khankari, 1995, Pharmaceutical hydrates, Thermochim. Acta, 248, 61, 10.1016/0040-6031(94)01952-D
Byrn, 2017, Solvates and hydrates, 38
Jurczak, 2020, Pharmaceutical hydrates analysis — overview of methods and recent advances, Pharmaceutics, 12, 959, 10.3390/pharmaceutics12100959
Griesser, 2006, The importance of solvates, 211
Brittain, 1999, Structural aspects of solvatomorphic systems, 233
Hossain Mithu, 2021, Advanced methodologies for pharmaceutical salt synthesis, Cryst. Growth Des., 21, 1358, 10.1021/acs.cgd.0c01427
Chakravarty, 2021, The importance of water-solid interactions in small molecule drug development: an industry perspective, Trends Anal. Chem., 140, 10.1016/j.trac.2021.116276
Chakravarty, 2010, Insights into the dehydration behavior of thiamine hydrochloride (vitamin B1) hydrates: part I, J. Pharm. Sci., 99, 816, 10.1002/jps.21876
Chakravarty, 2010, Insights into the dehydration behavior of thiamine hydrochloride (vitamin B1) hydrates: part II, J. Pharm. Sci., 99, 1882, 10.1002/jps.21968
Stephenson, 1998, Formation of isomorphic desolvates: creating a molecular vacuum, J. Pharm. Sci., 87, 536, 10.1021/js970449z
Werner, 2020, Data mining the Cambridge Structural Database for hydrate–anhydrate pairs with SMILES strings, CrystEngComm, 22, 7290, 10.1039/D0CE00273A
Klitou, 2019, Synthonic modeling of quercetin and its hydrates: explaining crystallization behavior in terms of molecular conformation and crystal packing, Cryst. Growth Des., 19, 4774, 10.1021/acs.cgd.9b00650
Bērziņš, 2018, Detailed analysis of packing efficiency allows rationalization of solvate formation propensity for selected structurally similar organic molecules, Cryst. Growth Des., 18, 2040, 10.1021/acs.cgd.7b01457
Clarke, 2010, Structure−stability relationships in cocrystal hydrates: does the promiscuity of water make crystalline hydrates the nemesis of crystal engineering?, Cryst. Growth Des., 10, 2152, 10.1021/cg901345u
Tilbury, 2018, Combining theoretical and data-driven approaches to predict drug substance hydrate formation, Cryst. Growth Des., 18, 57, 10.1021/acs.cgd.7b00517
Takieddin, 2016, Prediction of hydrate and solvate formation using statistical models, Cryst. Growth Des., 16, 70, 10.1021/acs.cgd.5b00966
Bajpai, 2016, Towards an understanding of the propensity for crystalline hydrate formation by molecular compounds, IUCrJ, 3, 430, 10.1107/S2052252516015633
Sanii, 2021, Toward an understanding of the propensity for crystalline hydrate formation by molecular compounds. part 2, Cryst. Growth Des., 21, 4927, 10.1021/acs.cgd.1c00353
Braun, 2020, The eight hydrates of strychnine sulfate, Cryst. Growth Des., 20, 6069, 10.1021/acs.cgd.0c00777
Braun, 2019, Inconvenient truths about solid form landscapes revealed in the polymorphs and hydrates of gandotinib, Cryst. Growth Des., 19, 2947, 10.1021/acs.cgd.9b00162
Stahly, 2007, Diversity in single- and multiple-component crystals. the search for and prevalence of polymorphs and cocrystals, Cryst. Growth Des., 7, 1007, 10.1021/cg060838j
Stephenson, 1997, Solid-state investigations of erythromycin a dihydrate: structure, NMR spectroscopy, and hygroscopicity, J. Pharm. Sci., 86, 1239, 10.1021/js9701667
Reutzel, 1998, Origins of the unusual hygroscopicity observed in LY297802 tartrate, J. Pharm. Sci., 87, 1568, 10.1021/js9801790
Othman, 2007, Structural study of polymorphs and solvates of finasteride, J. Pharm. Sci., 96, 1380, 10.1002/jps.20940
Gorman, 2012, Understanding the dehydration of levofloxacin hemihydrate, J. Pharm. Sci., 101, 3319, 10.1002/jps.23200
Te, 2003, X-ray diffraction and solid-state NMR investigation of the single-crystal to single-crystal dehydration of thiamine hydrochloride monohydrate, Cryst. Growth Des., 3, 997, 10.1021/cg0340749
Wang, 2012, Solid-state NMR studies of form I of atorvastatin calcium, J. Phys. Chem. B, 116, 3641, 10.1021/jp212074a
Holmes, 2020, Chemical shift tensors of cimetidine form A modeled with density functional theory calculations: implications for NMR crystallography, J. Phys. Chem. A, 124, 3109, 10.1021/acs.jpca.0c00421
Namespetra, 2016, 35Cl solid-state NMR spectroscopy of HCl pharmaceuticals and their polymorphs in bulk and dosage forms, CrystEngComm, 18, 6213, 10.1039/C6CE01069E
Holmes, 2019, A new NMR crystallographic approach to reveal the calcium local structure of atorvastatin calcium, Phys. Chem. Chem. Phys., 21, 6319, 10.1039/C8CP07673A
Burgess, 2012, Sodium-23 solid-state nuclear magnetic resonance of commercial sodium naproxen and its solvates, J. Pharm. Sci., 101, 2930, 10.1002/jps.23196
Bai, 2020, High-resolution 13C and 43Ca solid-state NMR and computational studies of the ethylene glycol solvate of atorvastatin calcium, Magn. Reson. Chem., 58, 1010, 10.1002/mrc.4937
Hamaed, 2008, Application of solid-state 35Cl NMR to the structural characterization of hydrochloride pharmaceuticals and their polymorphs, J. Am. Chem. Soc., 130, 11056, 10.1021/ja802486q
Redman-Furey, 2005, Structural and analytical characterization of three hydrates and an anhydrate form of risedronate, J. Pharm. Sci., 94, 893, 10.1002/jps.20308
Lester, 2006, Dehydration of risedronate hemi-pentahydrate: analytical and physical characterization, J. Pharm. Sci., 95, 2631, 10.1002/jps.20662
Burgess, 2012, Sodium-23 solid-state nuclear magnetic resonance of commercial sodium naproxen and its solvates, J. Pharm. Sci., 101, 2930, 10.1002/jps.23196
Bonhomme, 2012, 87Sr solid-state NMR as a structurally sensitive tool for the investigation of materials: antiosteoporotic pharmaceuticals and bioactive glasses, J. Am. Chem. Soc., 134, 12611, 10.1021/ja303505g
Paulekuhn, 2007, Trends in active pharmaceutical ingredient salt selection based on analysis of the orange book database, J. Med. Chem., 50, 6665, 10.1021/jm701032y
Desiraju, 1999
Steiner, 1998, Hydrogen-bond distances to halide ions in organic and organometallic crystal structures: up-to-date database study, Acta Crystallogr. B, 54, 456, 10.1107/S0108768197014821
Hildebrand, 2014, 35Cl solid-state NMR of HCl salts of active pharmaceutical ingredients: structural prediction, spectral fingerprinting and polymorph recognition, CrystEngComm, 16, 7334, 10.1039/C4CE00544A
Peach, 2018, Mechanochemical syntheses and 35Cl solid-state NMR characterization of fluoxetine HCl cocrystals, CrystEngComm, 20, 2780, 10.1039/C8CE00378E
Vogt, 2014, Solid-state NMR analysis of a complex crystalline phase of ronacaleret hydrochloride, J. Phys. Chem. B, 118, 10266, 10.1021/jp505061j
Hirsh, 2016, 35Cl dynamic nuclear polarization solid-state NMR of active pharmaceutical ingredients, Phys. Chem. Chem. Phys., 18, 25893, 10.1039/C6CP04353D
Vogt, 2013, Solid-state NMR analysis of a boron-containing pharmaceutical hydrochloride salt, J. Pharm. Sci., 102, 3705, 10.1002/jps.23679
Hirsh, 2019, In situ characterization of waters of hydration in a variable-hydrate active pharmaceutical ingredient using 35Cl solid-state NMR and X-ray diffraction, Cryst. Growth Des., 19, 7349, 10.1021/acs.cgd.9b01218
Hirsh, 2018, Quantifying disproportionation in pharmaceutical formulations with 35Cl solid-state NMR, Mol. Pharm., 15, 4038, 10.1021/acs.molpharmaceut.8b00470
Holmes, 2022, Nutraceuticals in bulk and dosage forms: analysis by 35Cl and 14N solid-state NMR and DFT calculations, Mol. Pharm., 19, 440, 10.1021/acs.molpharmaceut.1c00708
Iuga, 2021, 35Cl-1H heteronuclear correlation MAS NMR experiments for probing pharmaceutical salts, Magn. Reson. Chem., 59, 1089, 10.1002/mrc.5188
Pandey, 2016, Two-dimensional proton-detected 35Cl/1H correlation solid-state NMR experiment under fast magic angle sample spinning: application to pharmaceutical compounds, Phys. Chem. Chem. Phys., 18, 6209, 10.1039/C5CP06042G
Wijesekara, 2020, Fast acquisition of proton-detected HETCOR solid-state NMR spectra of quadrupolar nuclei and rapid measurement of NH bond lengths by frequency selective HMQC and RESPDOR pulse sequences, Chem. Eur J., 26, 7881, 10.1002/chem.202000390
Bryce, 2001, High-field chlorine NMR spectroscopy of solid organic hydrochloride salts: a sensitive probe of hydrogen bonding environments, J. Phys. Chem. A, 105, 10413, 10.1021/jp011962a
Gervais, 2005, Combined first-principles computational and experimental multinuclear solid-state NMR investigation of amino acids, J. Phys. Chem. A, 109, 6960, 10.1021/jp0513925
Bryce, 2006, Solid-state 35/37Cl NMR spectroscopy of hydrochloride salts of amino acids implicated in chloride ion transport channel selectivity: opportunities at 900 MHz, J. Am. Chem. Soc., 128, 2121, 10.1021/ja057253i
Chapman, 2007, A high-field solid-state 35/37Cl NMR and quantum chemical investigation of the chlorine quadrupolar and chemical shift tensors in amino acid hydrochlorides, Phys. Chem. Chem. Phys., 9, 6219, 10.1039/b712688c
Bryce, 2006, Chlorine-35/37 NMR spectroscopy of solid amino acid hydrochlorides: refinement of hydrogen-bonded proton positions using experiment and theory, J. Phys. Chem. B, 110, 26461, 10.1021/jp065878c
Socha, 2017, Exploring systematic discrepancies in DFT calculations of chlorine nuclear quadrupole couplings, J. Phys. Chem. A, 121, 4103, 10.1021/acs.jpca.7b02810
Attrell, 2012, Weak halogen bonding in solid haloanilinium halides probed directly via chlorine-35, bromine-81, and iodine-127 NMR spectroscopy, Cryst. Growth Des., 12, 1641, 10.1021/cg201683p
Penner, 2011, A multinuclear NMR and quantum chemical study of solid trimethylammonium chloride, Can. J. Chem., 89, 1036, 10.1139/v11-034
Chapman, 2011, A solid-state 35/37Cl NMR study of a chloride ion receptor and a GIPAW-DFT study of chlorine NMR interaction tensors in organic hydrochlorides, Can. J. Chem., 89, 822, 10.1139/v10-177
Burgess, 2012, A combined solid-state NMR and X-ray crystallography study of the bromide ion environments in triphenylphosphonium bromides, Chem. Eur J., 18, 5748, 10.1002/chem.201103478
Viger-Gravel, 2014, Direct investigation of halogen bonds by solid-state multinuclear magnetic resonance spectroscopy and molecular orbital analysis, J. Am. Chem. Soc., 136, 6929, 10.1021/ja5013239
Vojvodin, 2022, Multi-component crystals containing urea: mechanochemical synthesis and characterization by 35Cl solid-state NMR spectroscopy and DFT calculations, CrystEngComm, 10.1039/D1CE01610E
Azaïs, 2003, 35Cl quadrupolar constants obtained by solid-state NMR: study of chlorinated Al–O–P clusters, involving OH···Cl hydrogen bonds, Solid State Nucl. Magn. Reson., 23, 14, 10.1016/S0926-2040(02)00012-7
Holmes, 2018, Refining crystal structures with quadrupolar NMR and dispersion-corrected density functional theory, J. Phys. Chem. C, 122, 1809, 10.1021/acs.jpcc.7b12314
Holmes, 2020, Dispersion-corrected DFT methods for applications in nuclear magnetic resonance crystallography, J. Phys. Chem. A, 124, 10312, 10.1021/acs.jpca.0c06372
Holmes, 2017, Semi-empirical refinements of crystal structures using 17O quadrupolar-coupling tensors, J. Chem. Phys., 146, 10.1063/1.4975170
Grimme, 2006, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem., 27, 1787, 10.1002/jcc.20495
Vogt, 2006, Physical, crystallographic, and spectroscopic characterization of a crystalline pharmaceutical hydrate: understanding the role of water, Cryst. Growth Des., 6, 2333, 10.1021/cg060324k
Abraham, 2016, Characterising the role of water in sildenafil citrate by NMR crystallography, CrystEngComm, 18, 1054, 10.1039/C5CE02234G
Vogt, 2010, Isomorphism, disorder, and hydration in the crystal structures of racemic and single-enantiomer carvedilol phosphate, Cryst. Growth Des., 10, 2713, 10.1021/cg100209v
Vogt, 2006, A study of variable hydration states in topotecan hydrochloride, J. Pharm. Biomed. Anal., 40, 1080, 10.1016/j.jpba.2005.08.032
Keeler, 2019, High-resolution 17O NMR spectroscopy of structural water, J. Phys. Chem. B, 123, 3061, 10.1021/acs.jpcb.9b02277
Zhang, 1996, 17O NMR and crystalline hydrates, Solid State Nucl. Magn. Reson., 7, 147, 10.1016/S0926-2040(96)01258-1
Pines, 1972, Proton-enhanced nuclear induction spectroscopy. 13C chemical shielding anisotropy in some organic solids, Chem. Phys. Lett., 15, 10.1016/0009-2614(72)80191-X
Schaefer, 1976, Carbon-13 nuclear magnetic resonance of polymers spinning at the magic angle, J. Am. Chem. Soc., 98, 1031, 10.1021/ja00420a036
Peersen, 1993, Variable-amplitude cross-polarization MAS NMR, J. Magn. Reson., Ser. A, 104, 334, 10.1006/jmra.1993.1231
Metz, 1994, Ramped-amplitude pross Polarization in magic-angle-spinning NMR, J. Magn. Reson., Ser. A, 110, 219, 10.1006/jmra.1994.1208
Morcombe, 2003, Chemical shift referencing in MAS solid state NMR, J. Magn. Reson., 162, 479, 10.1016/S1090-7807(03)00082-X
O'Dell, 2009, Acquisition of ultra-wideline NMR spectra from quadrupolar nuclei by frequency stepped WURST–QCPMG, Chem. Phys. Lett., 468, 330, 10.1016/j.cplett.2008.12.044
O'Dell, 2008, QCPMG using adiabatic pulses for faster acquisition of ultra-wideline NMR spectra, Chem. Phys. Lett., 464, 97, 10.1016/j.cplett.2008.08.095
Bhattacharyya, 2007, Quadrupolar nuclear magnetic resonance spectroscopy in solids using frequency-swept echoing pulses, J. Chem. Phys., 127, 10.1063/1.2793783
Kupce, 1995, Adiabatic pulses for wideband inversion and broadband decoupling, J. Magn. Reson., 115, 273, 10.1006/jmra.1995.1179
Hahn, 1950, Spin echoes, Phys. Rev., 80, 580, 10.1103/PhysRev.80.580
Kentgens, 1997, A practical guide to solid-state NMR of half-integer quadrupolar nuclei with some applications to disordered systems, Geoderma, 80, 271, 10.1016/S0016-7061(97)00056-6
Bryce, 2006, Solid-state NMR spectroscopy of the quadrupolar halogens: chlorine-35/37, bromine-79/81, and iodine-127, Magn. Reson. Chem., 44, 409, 10.1002/mrc.1741
van Meerten, 2019, A cross-platform open-source NMR data processing and fitting application, J. Magn. Reson., 301, 56, 10.1016/j.jmr.2019.02.006
Adiga, 2007, EFGShield — a program for parsing and summarizing the results of electric field gradient and nuclear magnetic shielding tensor calculations, Can. J. Chem., 85, 496, 10.1139/v07-069
Altenhof, 2020, Practical aspects of recording ultra-wideline NMR patterns under magic-angle spinning conditions, J. Phys. Chem. C, 124, 14730, 10.1021/acs.jpcc.0c04510
Vold, 2009, Effects of jump dynamics on solid state nuclear magnetic resonance line shapes and spin relaxation times, J. Magn. Reson., 198, 57, 10.1016/j.jmr.2009.01.008
Clark, 2005, First principles methods using CASTEP, Z. Kristallogr., 220, 567, 10.1524/zkri.220.5.567.65075
James, 1974, The crystal and molecular structure of the antihistaminic drug triprolidine hydrochloride monohydrate [trans-1-(p-tolyl)-1-(2-pyridyl)-3-(1-pyrrolidino)-prop-1-ene], Can. J. Chem., 52, 1880, 10.1139/v74-268
Shibata, 1983, Structure of N-cyano-N'-methyl-N''-(2-{[(5-methyl-1H-imidazole-4-yl)methyl]thio}ethyl)guanidine (cimetidine) monohydrochloride monohydrate, C10H17N6S+.Cl-.H2O, Acta Crystallogr. C, 39, 1255, 10.1107/S0108270183008124
Watts, 2016, Combining the advantages of powder X-ray diffraction and NMR crystallography in structure determination of the pharmaceutical material cimetidine hydrochloride, Cryst. Growth Des., 16, 1798, 10.1021/acs.cgd.6b00016
Dow, 1970, Refinement of the structure of arginine hydrochloride monohydrate, Acta Crystallogr. B, 26, 1662, 10.1107/S0567740870004697
Μazumdar, 1969, The crystal structure of L-arginine hydrochloride, Z. Kristallogr., 130, 328, 10.1524/zkri.1969.130.1-6.328
Suh, 1982, The crystal and molecular structure of thiamine dichloride monohydrate, J. Kor. Phys. Soc., 15
Hammer, 1999, Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals, Phys. Rev. B, 59, 7413, 10.1103/PhysRevB.59.7413
Yates, 2007, Calculation of NMR chemical shifts for extended systems using ultrasoft pseudopotentials, Phys. Rev. B, 76, 10.1103/PhysRevB.76.024401
Monkhorst, 1976, Special points for Brillouin-zone integrations, Phys. Rev. B, 13, 5188, 10.1103/PhysRevB.13.5188
Pfrommer, 1997, Relaxation of crystals with the quasi-Newton method, J. Comput. Phys., 131, 233, 10.1006/jcph.1996.5612
McNellis, 2009, Azobenzene at coinage metal surfaces: role of dispersive van der Waals interactions, Phys. Rev. B, 80, 10.1103/PhysRevB.80.205414
Pickard, 2001, All-electron magnetic response with pseudopotentials: NMR chemical shifts, Phys. Rev. B, 63, 10.1103/PhysRevB.63.245101
Profeta, 2003, Accurate first principles prediction of 17O NMR parameters in SiO2: assignment of the zeolite ferrierite spectrum, J. Am. Chem. Soc., 125, 541, 10.1021/ja027124r
Bonhomme, 2012, First-principles calculation of NMR parameters using the gauge including projector augmented wave method: a chemist's point of view, Chem. Rev., 112, 5733, 10.1021/cr300108a
O'Dell, 2010, Optimized excitation pulses for the acquisition of static NMR powder patterns from half-integer quadrupolar nuclei, J. Magn. Reson., 203, 156, 10.1016/j.jmr.2009.12.016
O'Dell, 2012, Multinuclear solid-state nuclear magnetic resonance and density functional theory characterization of interaction tensors in taurine, J. Phys. Chem. A, 116, 1008, 10.1021/jp210844t
Altenhof, 2019, On the use of frequency-swept pulses and pulses designed with optimal control theory for the acquisition of ultra-wideline NMR spectra, J. Magn. Reson., 309, 10.1016/j.jmr.2019.106612
Koppe, 2020, Minimizing lineshape distortions in static ultra-wideline nuclear magnetic resonance of half-integer spin quadrupolar nuclei, J. Phys. Chem. A, 124, 4314, 10.1021/acs.jpca.0c03658
Baltisberger, 2012, Phase incremented echo train acquisition in NMR spectroscopy, J. Chem. Phys., 136, 10.1063/1.4728105
Pyykkö, 2018, Year-2017 nuclear quadrupole moments, Mol. Phys., 116, 1328, 10.1080/00268976.2018.1426131
Autschbach, 2010, Analysis of electric field gradient tensors at quadrupolar nuclei in common structural motifs, Concepts Magn. Reson., 36A, 84, 10.1002/cmr.a.20155
Chandrakumar, 1996, NMR of spin-1 systems in the solid state, 10.1007/978-3-642-61089-9_3
Maruyoshi, 2017, Assessing the detection limit of a minority solid-state form of a pharmaceutical by 1H double-quantum magic-angle spinning nuclear magnetic resonance spectroscopy, J. Pharm. Sci., 106, 3372, 10.1016/j.xphs.2017.07.014
Barnes, 1980, vol. 1, 335
Weiss, 1980, vol. 4, 149
Larsson, 1991, Reorientation of water molecules in solid hydrates. correlation with spectroscopic and structural data, J. Chem. Soc., Faraday Trans., 87, 1193, 10.1039/ft9918701193
Walder, 2018, Hydrogen motional disorder in crystalline iron group chloride dihydrates, J. Chem. Phys., 149, 10.1063/1.5037151
Tobar, 2020, Water dynamics in deuterated gypsum, CaSO4·2D2O, investigated by solid state deuterium NMR, J. Magn. Reson., 310, 10.1016/j.jmr.2019.106640
Ketudat, 1957, Electric quadrupole interactions of deuterons and molecular motion in Li2SO4·D2O, J. Chem. Phys., 26, 708, 10.1063/1.1743374
McGrath, 1967, Deuteron magnetic resonance study of potassium oxalate monodeuterate, J. Chem. Phys., 46, 1824, 10.1063/1.1840941
Long, 1997, 2H NMR line shapes and spin−lattice relaxation in Ba(ClO3)2·2H2O, J. Phys. Chem. A, 101, 988, 10.1021/jp962116g
Sapiga, 2001, NMR investigation of natrolite structure, Cryst. Res. Technol., 36, 875, 10.1002/1521-4079(200110)36:8/10<875::AID-CRAT875>3.0.CO;2-#
Frydman, 1995, Isotropic spectra of half-integer quadrupolar spins from bidimensional magic-angle spinning NMR, J. Am. Chem. Soc., 117, 5367, 10.1021/ja00124a023
Medek, 1995, Multiple-quantum magic-angle spinning NMR: a new method for the study of quadrupolar nuclei in solids, J. Am. Chem. Soc., 117, 12779, 10.1021/ja00156a015
Paruzzo, 2018, Chemical shifts in molecular solids by machine learning, Nat. Commun., 9, 4501, 10.1038/s41467-018-06972-x
Cordova, 2021, Bayesian probabilistic assignment of chemical shifts in organic solids, Sci. Adv., 7, 10.1126/sciadv.abk2341