Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Các hợp chất kết hợp của hạt nano MnO2 được neo trên các lớp graphene như là nơi chứa lưu huỳnh hiệu quả cho các pin lithium lưu huỳnh hiệu suất cao
Tóm tắt
Pin lithium-lưu huỳnh (Li–S) được coi là một lựa chọn hứa hẹn cho các ứng dụng lưu trữ năng lượng điện hóa do chi phí thấp và khả năng lý thuyết cao. Tuy nhiên, ứng dụng thực tế của pin Li–S vẫn bị cản trở do tính dẫn điện kém của catốt S và sự hòa tan/cơ động cao của polysulfide trong điện phân. Trong bài báo này, chúng tôi báo cáo một chiến lược giam giữ vật lý và hóa học mới để giải quyết hai vấn đề này bằng cách thiết kế cấu trúc vật liệu lai ba hợp chất lưu huỳnh–MnO2@graphene (S–MnO2@GN). Các hạt MnO2 có kích thước ~ 10 nm được neo chặt chẽ trên các tấm GN nhăn nheo và xoắn lại để tạo thành một nơi chứa lưu huỳnh hiệu quả cao. Nhờ vào những hiệu ứng cộng sinh của GN và MnO2 trong việc cải thiện độ dẫn điện và ngăn chặn polysulfides thông qua các quá trình hấp phụ vật lý và hóa học, composite đặc biệt S–MnO2@GN này thể hiện hiệu suất điện hóa tuyệt vời. Các khả năng đặc hiệu đảo ngược đạt được lần lượt là 1416, 1114 và 421 mA h g−1 tại các tốc độ 0.1, 0.2 và 3.2 C. Sau một bài kiểm tra ổn định 100 chu kỳ, catốt composite S–MnO2@GN vẫn có thể duy trì một khả năng đảo ngược là 825 mA h g−1.
Từ khóa
Tài liệu tham khảo
Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM (2012) Li-O2 and Li-S batteries with high energy storage. Nat Mater 11:19–29
Yang T, Qian T, Wang M, Liu J, Zhou J, Sun Z, Chen M, Yan C (2015) A new approach towards the synthesis of nitrogen-doped graphene/MnO2 hybrids for ultralong cycle-life lithium ion batteries. J Mater Chem A 3:6291–6300
Schuster J, He G, Mandlmeier B, Yim T, Lee KT, Bein T, Nazar LF (2012) Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium–sulfur batteries. Angew Chem Int Ed 51:3591–3655
Suo L, Hu YS, Li H, Armand M, Chen L (2013) A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat Commun 4:1481
Yang Y, Zheng G, Cui Y (2013) Nanostructured sulfur cathodes. Chem Soc Rev 42:3018–3032
Manthiram A, Chung SH, C Zu (2015) Lithium-sulfur batteries: progress and prospects. Adv Mater 27:1980–2006
Cakan RD, Morcrette M, Nouar F, Davoisne C, Devic T, Gonbeau D, Dominko R, Serre C, Ferey G, Tarascon JM (2011) Cathode composites for Li–S batteries via the use of oxygenated porous architectures. J Am Chem Soc 133:16154–16160
Evers S, Nazar LF (2013) New approaches for high energy density lithium–sulfur battery cathodes. Acc Chem Res 5:1135–1143
Cai K, Song MK, Cairns EJ, Zhang Y (2012) Nanostructured Li2S–C composites as cathode material for high-energy lithium/sulfur batteries. Nano Lett 12:6474–6479
Jayaprakash N, Shen J, Moganty SS, Corona A, Archer LA (2011) Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. Angew Chem Int Ed 123:6026–6030
Yuan Z, Peng HJ, Huang JQ, Liu XY, Wang DW, Cheng XB, Zhang Q (2014) Hierarchical free-standing carbon-nanotube paper electrodes with ultrahigh sulfur-loading for lithium-sulfur batteries. Adv Funct Mater 24:6105–6112
Kim JH, Fu K, Choi J, Sun S, Kim J, Hu L, Paik U (2015) Hydroxylated carbon nanotube enhanced sulfur cathodes for improved electrochemical performance of lithium–sulfur batteries. Chem Commun 51:13682–13685
Ye X, Ma J, Hu YS, Wei H, Ye F (2016) MWCNT porous microspheres with an efficient 3D conductive network for high performance lithium–sulfur batteries. J Mater Chem A 4:775–780
Li Z, Jiang Y, Yuan L, Yi Z, Wu C, Liu Y, Strasser P, Huang Y (2014) A highly ordered meso@microporous carbon-supported sulfur@smaller sulfur core–shell structured cathode for Li–S batteries. ACS Nano 8:9295–9303
Wang C, Wan W, Chen JT, Zhou HH, Zhang XX, Yuan LX, Huang YH (2013) Dual core–shell structured sulfur cathode composite synthesized by a one-pot route for lithium sulfur batteries. J Mater Chem A 1:1716–1723
Li Z, Yuan LX, Yi ZQ, Sun YM, Liu Y, Jiang Y, Shen Y, Xin Y, Zhang ZL, Huang YH (2014) Insight into the electrode mechanism in lithium-sulfur batteries with ordered microporous carbon confined sulfur as the cathode. Adv Energy Mater 4:1301473
Yuan G, Wang G, Wang H, Bai J (2015) A novel three-dimensional sulfur/graphene/carbon nanotube composite prepared by a hydrothermal co-assembling route as binder-free cathode for lithium–sulfur batteries. J Nanopart Res 17:36
Fei L, Li X, Bi W, Zhuo Z, Wei W, Sun L, Lu W, Wu X, Xie K, Wu C, Chan HL, Wang Y (2015) Graphene/sulfur hybrid nanosheets from a space-confined “sauna” reaction for high-performance lithium-sulfur batteries. Adv Mater 27:5936–5942
Shan J, Liu Y, Su Y, Liu P, Zhuang X, Wu D, Zhang F, Feng X (2016) Graphene-directed two-dimensional porous carbon frameworks for high-performance lithium–sulfur battery cathodes. J Mater Chem A 4:314–320
Zhou W, Yu Y, Chen H, DiSalvo FJ, Abruña HD (2013) Yolk–shell structure of polyaniline-coated sulfur for lithium–sulfur batteries. J Am Chem Soc 135:16736–16743
Moon S, Jung YH, Kim DK (2015) Enhanced electrochemical performance of a crosslinked polyaniline-coated graphene oxide-sulfur composite for rechargeable lithium–sulfur batteries. J Power Sources 294:386–392
Sun Y, Wang S, Cheng H, Dai Y, Yu J, Wu J (2015) Synthesis of a ternary polyaniline@acetylene black-sulfur material by continuous two-step liquid phase for lithium sulfur batteries. J Electrochim. Acta 158:143–151
Wang W, Li G, Wang Q, Li G, Ye S, Gao X (2013) Sulfur-polypyrrole/graphene multi-composites as cathode for lithium-sulfur battery. J Electrochem Soc 160:A805–A810
Ma G, Wen Z, Wang Q, Shen C, Peng P, Jin J, Wu X (2015) Enhanced performance of lithium sulfur battery with self-assembly polypyrrole nanotube film as the functional interlayer. J Power Sources 273:511–516
Liang X, Zhang M, Kaiser MR, Gao X, Konstantinov K, Tandiono R, Wang Z, Liu HK, Dou SX, Wang J (2015) Split-half-tubular polypyrrole@sulfur@polypyrrole composite with a novel three-layer-3D structure as cathode for lithium/sulfur batteries. Nano Energy 11:587–599
Pang Q, Kundu D, Cuisinier M, Nazar LF (2014) Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nat Commun 5:4759
Wang Z, Dong Y, Li H, Zhao Z, Wu HB, Hao C, Liu S, Qiu J, Lou XW (2014) Enhancing lithium–sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide. Nat Commun 5:5002
Hart CJ, Cuisinier M, Liang X, Kundu D, Garsuch A, Nazar LF (2015) Rational design of sulphur host materials for Li–S batteries: correlating lithium polysulphide adsorptivity and self-discharge capacity loss. Chem Commun 51:2308–2311
Liang Z, Zheng G, Li W, Seh ZW, Yao H, Yan K, Kong D, Cui Y (2014) Sulfur cathodes with hydrogen reduced titanium dioxide inverse opal structure. ACS Nano 8:5249–5256
Tao X, Wang J, Ying Z, Cai Q, Zheng G, Gan Y, Huang H, Xia Y, Liang C, Zhang W, Cui Y (2014) Strong sulfur binding with conducting magnéli-phase TinO2n–1 nanomaterials for improving lithium–sulfur batteries. Nano Lett 14:5288–5294
Liang X, Hart C, Pang Q, Garsuch A, Weiss T, Nazar LF (2015) A highly efficient polysulfide mediator for lithium–sulfur batteries. Nat Commun 6:5682
Zhang Q, Wang Y, Seh ZW, Fu Z, Zhang R, Cui Y (2015) Understanding the anchoring effect of two-dimensional layered materials for lithium–sulfur batteries. Nano Lett 15:3780–3786
Yuan Z, Peng H, Hou T, Huang J, Chen C, Wang D, Cheng X, Wei F, Zhang Q (2016) Powering lithium–sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett 16:519–527
Seh ZW, Yu JH, Li W, Hsu P, Wang H, Sun Y, Yao H, Zhang Q, Cui Y (2014) Two-dimensional layered transition metal disulphides for effective encapsulation of high-capacity lithium sulphide cathodes. Nat Commun 5:5017
Fan Q, Liu W, Weng Z, Sun Y, Wang H (2015) Ternary hybrid material for high-performance lithium–sulfur battery. J Am Chem Soc 137:12946–12953
Li Z, Zhang J, Lou XW (2015) Hollow carbon nanofibers filled with MnO2 nanosheets as efficient sulfur hosts for lithium–sulfur batteries. Angew Chem Int Ed 54:12886–12890
Xiao Z, Yang Z, Wang L, Nie H, Zhong M, Lai Q, Xu X, Zhang L, Huang S (2015) A lightweight TiO2/graphene interlayer, applied as a highly effective polysulfide absorbent for fast, long-life lithium-sulfur batteries. Adv Mater 27:2891–2898
Zhao J, Pei S, Ren W, Gao L, Cheng HM (2010) Efficient preparation of large-area graphene oxide sheets for transparent conductive films. ACS Nano 4:5245–5252
Yuan G, Wang G, Wang H, Bai J (2015) A novel sulfur/carbon hollow microsphere yolk-shell composite as a high-performance cathode for lithium sulfur batteries. J Solid State Electrochem 19:1143–1149
Liu Y, Zhang M, Zhang J, Qian Y (2006) A simple method of fabricating large-area α-MnO2 nanowires and nanorods. J Solid State Chem 179:1757–1761
Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565
Tang Q, Jiang L, Liu J, Wang S, Sun G (2014) Effect of surface manganese valence of manganese oxides on the activity of the oxygen reduction reaction in alkaline media. ACS Catal 4:457–463
Wang B, Wen Y, Ye D, Yu H, Sun B, Wang G, Wang L (2014) Dual protection of sulfur by carbon nanospheres and graphene sheets for lithium–sulfur batteries. Chem-Eur J 20:5224