Hybridization does not currently pose conservation concerns to murres in the Atlantic
Tóm tắt
Hybridization can negatively impact one or both taxa involved and therefore pose conservation concerns. Climate change is expected to increase the rate of hybridization particularly in polar regions, and so investigating hybridization in Arctic and Antarctic species is important for conservation. Hybridization and genetic introgression have been observed between Pacific populations of thick-billed (Uria lomvia) and common murres (Uria aalge), species of seabirds with arctic and low arctic/temperate distributions, respectively. We employed double-digest restriction site-associated DNA sequencing (ddRADseq) to generate thousands of genome-wide markers to investigate hybridization and introgression in 133 thick-billed and 119 common murres sampled from 15 colonies throughout the North Atlantic. We used molecular assignments and principal components analysis to identify hybrids and quantify genetic introgression. Despite previous reports of hybridization between murre species in the Atlantic, we found no evidence for hybrid individuals in our dataset, and limited evidence for introgression. Our results suggest that hybridization between Atlantic murre species is rare, and does not currently pose a conservation concern for either species. Our study provides baseline data for monitoring hybridization between murres in the Atlantic to assess future impacts of climate change on these species.
Tài liệu tham khảo
Abbott R, Barton N, Good J (2016) Genomics of hybridization and its evolutionary consequences. Mol Ecol 11:2325–2332. https://doi.org/10.1111/mec.13685
Ainley DG, Nettleship DN, Carter HR, Storey AE (2002) Common murre (Uria aalge), version 20. In: Poole AF, Gill FB (eds) The birds of North America. Cornell Lab of Ornithology, Ithaca
Allendorf FW, Luikart G, Aitken SN (2013) Conservation and the genetics of populations. Wiley, Hoboken
Anderson EC, Thompson EA (2002) A model-based method for identifying species hybrids using multilocus genetic data. Genetics 160:1217–1229
BirdLife International 2018. Uria lomvia. The IUCN Red list of threatened species 2018: e.T22694847A132066134. http://dx.doi.org/10.2305/IUCN.UK.2018-2.RLTS.T22694847A132066134.en. Accesed 12 Aug 2019
Birkhead TR, Nettleship DN (1986) Ecological relationships between common murres, Uria aalge, and thick-billed murres, Uria lomvia, at the Gannet Islands, Labrador. II. Breeding success and site characteristics. Can J Zool 65:1638–1649. https://doi.org/10.1139/z87-252
Birkhead TR, Nettleship DN (1987) Ecological relationships between common murres, Uria aalge, and thick-billed murres, Uria lomvia, at the Gannet Islands, Labrador. I. Morphometrics and timing of breeding. Can J Zool 65:1638–1649. https://doi.org/10.1139/z87-251
Boudhrioua C, Bastien M, Légaré G, Pomerleau S, St-Cyr J, Boyle B, Belzile F (2017) Genotyping-by-sequencing in potato. The potato genome. Springer, Cham, pp 283–296
Cairns DK, DeYoung B (1981) Back-crossing of a common murre (Uria aalge) and a common murre-thick-billed murre hybrid (U. aalge x U. lomvia). Auk 100:847–848. https://doi.org/10.1093/auk/98.4.847
Catchen J, Hohenlohe P, Bassham S, Amores A, Cresko W (2013) Stacks: an analysis tool set for population genomics. Mol Ecol 22:3124–3140. https://doi.org/10.1111/mec.12354
Chardine JW, Collins BT, Elliot RD, Lévesques H, Ryan PC (1999) Trends in the annual harvest of murres in Newfoundland and Labrador. In: Bird Trends. Canadian Wildlife Service, Ottawa
Chunco AJ (2014) Hybridization in a warmer world. Ecol Evol 4:2019–2021. https://doi.org/10.1002/ece3.1052
Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker R, Lunter G, Marth G, Sherry ST, McVean G, Durbin R, 1000 Genomes Project Analysis Group (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158. https://doi.org/10.1093/bioinformatics/btr330
Francis RM (2017) pophelper: an R package and web app to analyse and visualize population structure. Mol Ecol Resour 17:27–32. https://doi.org/10.1111/1755-0998.12509
Frederiksen M, Descamps S, Erikstad KE, Gaston AJ, Gilchrist HG, Grémillet D, Johansen KL, Kolbeinsson Y, Linebjerg JF, Mallory ML, McFarlane Tranquilla LA, Merkel FR, Montevecchi WA, Mosbech A, Reiersten TK, Robertson GJ, Steen H, Strøm H, Thórarinsson TL (2016) Migration and wintering of a declining seabird, the thick-billed murre Uria lomvia, on an ocean basin scale: conservation implications. Biol Conserv 200:26–35. https://doi.org/10.1016/j.biocon.2016.05.011
Friesen V, Barret R, Montevecchi WA, Davidson WS (1993) Molecular identification of a backcross between a female common murre X thick-billed murre hybrid and a male common murre. Can J Zool 71:1474–1477. https://doi.org/10.1139/z93-207
Gaston AJ, Hipfner JM (2000) Thick-billed murre (Uria lomvia). In: Poole A, Gill F (eds) The birds of North America, vol 497. The Birds of North America Inc, Philadelphia
Grabenstein KC, Taylor SA (2018) Breaking barriers: causes, consequences, and experimental utility of human-mediated hybridization. Trends Ecol Evol 33:198–212
Icelandic Institute of Natural History (2000) Válisti 2: fuglar. Icelandic Institute of Natural History, Reykjavík
Irons DB, Anker-Nilssen T, Gaston AJ, Byrd GV, Falk K, Gilchrist G, Hario M, Hjernquist M, Krasnov YV, Mosbech A, Reid J, Robertson G, Olsen B, Petersen A, Strom H, Wohl KD (2008) Fluctuations in circumpolar seabird populations linked to climate oscillations. Glob Change Biol 14:1455–1463. https://doi.org/10.1111/j.1365-2486.2008.01581.x
Jombart T, Ahmed I (2011) adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27:3070–3071. https://doi.org/10.1093/bioinformatics/btr521
Kelly B, Whiteley A, Tallmon D (2010) The Arctic melting pot. Nature 468:891. https://doi.org/10.1038/468891a
Langmead B, Salzberg S (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. https://doi.org/10.1038/nmeth.1923
Lecaudey LA, Schliewen UK, Osinov AG, Taylor EB, Bernatchez L, Weiss SJ (2018) Inferring phylogenetic structure, hybridization and divergence times within Salmonidae (Teleostei: Salmonidae) using RAD-sequencing. Mol Phylogenetics Evol 124:82–99.
McFarlane SE, Pemberton JM (2019) Detecting the true extent of introgression during anthropogenic hybridization. Trends Ecol Evol 34:315–326.
Morris-Pocock JA, Taylor SA, Birt TP, Damus M, Piatt JF, Warheit KI, Friesen VL (2008) Population genetic structure in Atlantic and Pacific Ocean common murres (Uria aalge): natural replicate tests of post-Pleistocene evolution. Mol Ecol 17:4859–4873.
Nettleship DN, Evans PGH (1985) Distribution and status of the Atlantic Alcidae. In: Nettleship DN, Birkhead TR (eds) the Atlantic Alcidae. Academic Press, Orlando, pp 53–154
Pfennig KS, Kelly AL, Pierce AA (2016) Hybridization as a facilitator of species range expansion. Philos T R Soc B. https://doi.org/10.1098/rspb.2016.1329
Piatt JF, Sydeman WJ, Wiese F (2007) Introduction: seabirds as indicators of marine ecosystems. Mar Ecol Prog Ser 352:199–204. https://doi.org/10.3354/meps07070
Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959
Provencher JF, Gaston AJ, Hara PO, Gilchrist HG (2012) Seabird diet indicates changing Arctic marine communities in eastern Canada. Mar Ecol Prog Ser 454:171–182. https://doi.org/10.3354/meps09299
Sakamoto Y, Yago M (2017) Potential for interspecific hybridization between Zizina emelina and Zizina otis (Lepidoptera: Lycaenidae). J Insect Conserv 21:509–515. https://doi.org/10.1007/s10841-017-9991-1
Smith N, Clarke J (2015) Systematics and evolution of the Pan-Alcidae (Aves, Charadriiformes). J Avian Biol 46:125–140. https://doi.org/10.1111/jav.00487
Stanley RRE, Jeffery NW, Wringe BF, Dibacco C, Bradbury IR (2017) GENEPOPEDIT: a simple and flexible tool for manipulating multilocus molecular data in R. Mol Ecol 17:12–18. https://doi.org/10.1111/1755-0998.12569
Taylor S, Patirana A, Birt T, Friesen V (2012) Cryptic introgression between murre sister species (Uria spp.) in the Pacific low Arctic: frequency, cause and implications. Polar Biol 35:931–940. https://doi.org/10.1007/s00300-011-1141-8
Taylor S, Larson E, Harrison RG (2015) Hybrid zones: windows on climate change. Trends Ecol Evol 30:398–406. https://doi.org/10.1016/j.tree.2015.04.010
Tigano A, Damus M, Birt TP, Morris-Pocock JA, Artukhin YB, Friesen VL (2015) The arctic: glacial refugium or area of secondary contact? Inference from the population genetic structure of the thick-billed murre (Uria lomvia) with implications for management. J Hered 106:238–246. https://doi.org/10.1093/jhered/esv016
Tigano A, Sackton TB, Friesen VL (2018) Assembly and RNA-free annotation of highly heterozygous genomes: the case of the thick-billed murre (Uria lomvia). Mol Ecol Resour 18:79–90. https://doi.org/10.1111/1755-0998.12712
Tschanz B, Wehrlin J (1968) Krysning mellom lomvi, Uria aalge, og polarlomvi, Uria lomvia, pi Rost i Lofoten. Fauna 21:53–55
Wickham H (2016) ggplot2: Elegant graphics for data analysis. Springer, New York
Wiese FK (2003) Sinking rates of dead birds: improving estimates of seabird mortality due to oiling. Mar Ornithol 31:65–70
Wringe BF, Stanley RRE, Jeffery NW, Anderson EC, Bradbury IR (2017) parallelnewhybrid: an R package for the parallelization of hybrid detection using NEWHYBRIDS. Mol Ecol Resour 17:91–95. https://doi.org/10.1111/1755-0998.12597
Zarza E, Faircloth BC, Tsai WLE, Bryson RW Jr, Klicka J, McCormack JE (2016) Hidden histories of gene flow in highland birds revealed with genomic markers. Mol Ecol 25:5144–5157. https://doi.org/10.1111/mec/13813