Hybridization and speciation

Journal of Evolutionary Biology - Tập 26 Số 2 - Trang 229-246 - 2013
Richard J. Abbott1, Dirk C. Albach2, Stephen W. Ansell3, J. W. Arntzen4, Stuart J. E. Baird5, Nicolas Bierne6, Janette W. Boughman7, Alan Brelsford8, C. Alex Buerkle9, Richard J. A. Buggs10, Roger K. Butlin11, Ulf Dieckmann12, Fabrice Eroukhmanoff13, Andrea Grill14, Sara Helms Cahan15, Jo S. Hermansen13, G. M. Hewitt16, A. Hudson17, Chris D. Jiggins18, Julia C. Jones19, Beat Keller20, Tobias Marczewski21, James Mallet22,23, Paloma Martínez-Rodríguez24, Markus Möst25, Sean P. Mullen26, Richard A. Nichols10, Arne W. Nolte27, Christian Parisod28, Karin S. Pfennig29, Amber M. Rice30, Michael G. Ritchie1, Bernhard Seifert31, Carole M. Smadja32, Rike Stelkens33, Jacek M. Szymura34, Risto Väinölä35, Jochen B. W. Wolf36, Dietmar Zinner37
1School of Biology, University of St Andrews, St Andrews, UK
2Institute of Biology and Environmental Sciences, Carl von Ossietzky-University Oldenburg, Oldenburg, Germany
3Natural History Museum, London, UK
4Netherlands Centre for Biodiversity Naturalis, RA Leiden, The Netherlands
5CIBIO Vairão Portugal
6Institut des Sciences de l'Evolution, CNRS, Montpellier Cedex 5, France
7Zoology and BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, USA
8Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
9Department of Botany, University of Wyoming, Laramie, WY, USA
10School of Biological and Chemical Sciences, Queen Mary, University of London, London, UK
11Animal and Plant Sciences, The University of Sheffield, Sheffield, UK
12Evolution and Ecology Program, International Institute for Applied Systems Analysis, Laxenburg, Austria
13Department of Biology, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
14Department of Tropical Ecology and Animal Biodiversity, University of Vienna, Wien, Austria
15Department of Biology, University of Vermont, Burlington, VT, USA
16School of Biological Sciences, University of East Anglia, Norwich, UK
17Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
18Department of Zoology, University of Cambridge, Cambridge, UK
19Department of Biology, University of Konstanz, Konstanz, Germany
20Institute of Systematic Botany, University of Zurich, Zurich, Switzerland
21Royal Botanic Garden Edinburgh, Edinburgh, UK
22Genetics, Evolution and Environment, UCL, London, UK
23Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
24Department of Biology (Genetics) Universidad Autónoma de Madrid Madrid Spain
25Eawag, Dübendorf, Switzerland
26Department of Biology, Boston University, Boston, MA, USA
27Max Planck Institute for Evolutionary Biology, Plön, Germany
28Laboratory of Evolutionary Botany, Institute of Biology, University of Neuchatel, Neuchatel, Switzerland
29Department of Biology, University of North Carolina, Chapel Hill, NC, USA
30Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA.
31Senckenberg Museum of Natural History Goerlitz, Goerlitz, Germany
32CNRS Institut des Science de l'Evolution Université Montpellier 2 Montpellier France
33Institute of Integrative Biology, University of Liverpool, Liverpool, UK
34Institute of Zoology, Jagiellonian University, Kraków, Poland
35Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
36Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
37Cognitive Ethology Laboratory, German Primate Center, Göttingen, Germany

Tóm tắt

AbstractHybridization has many and varied impacts on the process of speciation. Hybridization may slow or reverse differentiation by allowing gene flow and recombination. It may accelerate speciation via adaptive introgression or cause near‐instantaneous speciation by allopolyploidization. It may have multiple effects at different stages and in different spatial contexts within a single speciation event. We offer a perspective on the context and evolutionary significance of hybridization during speciation, highlighting issues of current interest and debate. In secondary contact zones, it is uncertain if barriers to gene flow will be strengthened or broken down due to recombination and gene flow. Theory and empirical evidence suggest the latter is more likely, except within and around strongly selected genomic regions. Hybridization may contribute to speciation through the formation of new hybrid taxa, whereas introgression of a few loci may promote adaptive divergence and so facilitate speciation. Gene regulatory networks, epigenetic effects and the evolution of selfish genetic material in the genome suggest that theDobzhansky–Muller model of hybrid incompatibilities requires a broader interpretation. Finally, although the incidence of reinforcement remains uncertain, this and other interactions in areas of sympatry may have knock‐on effects on speciation both within and outside regions of hybridization.

Từ khóa


Tài liệu tham khảo

10.1111/j.1095-8312.2004.00333.x

10.1098/rstb.2003.1289

10.1002/tax.595005

10.1111/j.1469-8137.2010.03215.x

10.1111/j.1558-5646.2007.00259.x

10.5962/bhl.title.4553

10.1111/j.1558-5646.1954.tb01504.x

10.1016/j.cub.2010.06.022

10.1038/sj.hdy.6800835

10.1186/1471-2148-10-385

10.1186/jbiol176

10.1890/0012-9658(1999)080[0371:NHHLCY]2.0.CO;2

10.1038/hdy.2011.65

10.1111/j.1558-5646.1995.tb04431.x

10.1038/nrg3015

10.1038/hdy.1979.86

10.1111/j.1558-5646.1983.tb05563.x

10.1046/j.1365-294x.2001.01216.x

10.1038/hdy.1986.135

10.1111/j.1558-5646.2009.00622.x

10.1146/annurev.es.16.110185.000553

10.1086/661246

Bernatchez L., 2004, Salmonid Perspectives on Evolution, 175

10.1098/rstb.2009.0274

10.1098/rspb.2003.2404

10.1111/j.1365-294X.2011.05080.x

10.1111/j.1365-294X.2011.05106.x

10.1111/j.1469-8137.2009.03087.x

10.1101/gr.751803

10.1073/pnas.0508192102

10.1126/science.1194776

10.1038/hdy.2011.46

10.1111/j.1095-8312.2004.00337.x

10.1111/j.1558-5646.2007.00267.x

10.1046/j.1365-2540.2000.00680.x

10.1111/j.1365-294X.2009.04285.x

10.1016/j.cub.2011.02.016

10.1016/0169-5347(94)90124-4

10.1098/rstb.2008.0076

10.1038/hdy.1978.44

10.1371/journal.pone.0016415

10.1101/gr.2662504

10.1111/j.1469-8137.2009.03091.x

10.1073/pnas.1112041109

10.1086/282434

10.1126/science.1107239

Comai L., 2003, Do the different parental ‘heteromes’ cause genomic shock in newly formed allopolyploids?, Philos. Trans. R. Soc. Lond., B, Biol. Sci., 358, 1149, 10.1098/rstb.2003.1305

10.1111/j.0014-3820.2006.tb01143.x

10.1111/j.1558-5646.2008.00413.x

10.1016/j.tree.2005.07.008

10.1038/nature05856

10.1086/280899

10.1146/annurev.genet.42.110807.091524

10.1098/rstb.2002.1059

10.3732/ajb.0900067

10.1111/j.1365-294X.2011.05182.x

10.1111/j.1096-0031.2006.00119.x

Endler J.A., 1977, Geographic Variation, Speciation and Clines

10.1111/j.1558-5646.2009.00661.x

Feder J.L., 2012, Establishment of new mutations under divergence and genomic hitchhiking, Proc. R. Soc. Lond. B, 367, 461

10.1111/j.1558-5646.1981.tb04864.x

10.1111/j.1420-9101.2009.01833.x

10.1111/j.1469-8137.2009.03089.x

10.1515/9780691187051

10.1111/j.1558-5646.2009.00844.x

10.1111/j.0014-3820.2006.tb01105.x

10.7312/gran92318

10.1111/j.1558-5646.1994.tb01313.x

10.1038/hdy.2011.80

10.1093/jhered/esi026

10.1073/pnas.1019217108

Harrison R.D., 1993, Hybrid Zones and the Evolutionary Process, 10.1093/oso/9780195069174.001.0001

10.1073/pnas.0902972106

10.1016/j.cub.2007.08.060

10.1016/j.cub.2008.03.043

10.1111/j.1365-294x.2005.02608.x

10.1098/rstb.2008.0080

10.1038/nature11041

10.1098/rspb.2006.3558

10.1111/j.1365-294X.2011.05183.x

10.1038/hdy.1975.108

10.1111/j.1095-8312.1996.tb01434.x

10.1007/s10709-011-9547-3

10.1371/journal.pgen.1000862

10.1073/pnas.1018222108

10.1086/501079

10.1111/j.1461-0248.2010.01448.x

10.1038/nature04004

Howard D.J., 1993, Hybrid Zones and the Evolutionary Process, 46, 10.1093/oso/9780195069174.003.0003

10.1098/rspb.2010.0925

10.1371/journal.pbio.0040325

10.1111/j.0014-3820.2005.tb00967.x

10.1038/nature09916

10.1006/jtbi.2000.2070

10.1371/journal.pgen.1001038

10.1093/genetics/153.2.965

10.1126/science.1164371

10.1534/genetics.105.047985

10.1111/j.0014-3820.2003.tb00223.x

10.1093/genetics/153.4.1959

10.1371/journal.pgen.1002274

10.1038/sj.hdy.6801045

10.1111/j.1558-5646.2009.00650.x

10.2307/1218997

Levin D.A., 2002, The Role of Chromosomal Change in Plant Evolution, 10.1093/oso/9780195138597.001.0001

10.1371/journal.pone.0003353

10.1126/science.290.5494.1151

10.1111/j.1469-7998.2011.00829.x

10.1126/science.1107577

10.1016/j.tree.2005.02.010

10.1038/nature05706

10.1093/sysbio/syr017

10.1126/science.1128721

10.1111/j.1365-294X.2008.03898.x

10.1038/nature04738

10.1126/science.1207205

10.1016/S0169-5347(02)02478-3

10.1111/j.0014-3820.2006.tb01835.x

10.1111/j.0014-3820.2006.tb01198.x

10.1111/j.1095-8312.2004.00348.x

10.1073/pnas.1000939107

10.1017/CBO9780511844270.012

10.1098/rstb.2011.0198

10.1111/j.0014-3820.2003.tb01537.x

10.1093/gbe/evr028

10.1038/nature07523

10.1016/j.tig.2009.12.001

10.1111/j.1365-294X.2006.02906.x

10.1111/j.1365-294X.2009.04208.x

10.1073/pnas.221274498

10.1016/j.tree.2008.10.011

10.1093/genetics/149.4.2099

10.1016/j.gde.2004.08.009

10.1007/s10709-006-0034-1

Ortiz‐Barrientos D., 2009, The genetics and ecology of reinforcement: implications for the evolution of prezygotic isolation in sympatry and beyond, The Year in Evolutionary Biology 2009: Ann. N.Y. Acad. Sci., 1168, 156

10.1111/j.1558-5646.2008.00577.x

10.1111/j.1469-8137.2011.04008.x

10.1111/j.1469-8137.2009.03096.x

10.1111/j.1469-8137.2009.02767.x

10.1186/1471-2148-11-113

Pfennig K.S., 2005, Character displacement as the ‘best of a bad situation’: fitness trade‐offs resulting from selection to minimize resource and mate competition, Evolution, 59, 2200

10.1086/605079

10.1086/657056

10.1098/rspb.2005.3446

10.1093/genetics/157.1.317

10.1534/genetics.108.098095

10.1111/j.0014-3820.2002.tb00136.x

10.1016/j.tplants.2008.03.004

10.1098/rstb.1998.0207

Price T., 2008, Speciation in Birds

10.1111/j.0014-3820.2002.tb00133.x

10.1146/annurev.ecolsys.33.010802.150437

10.1101/gr.2019804

10.1111/j.1420-9101.2010.01955.x

10.1146/annurev.ecolsys.28.1.359

10.1016/S0169-5347(01)02187-5

10.1126/science.1086949

10.1111/j.1365-294X.2004.02379.x

10.1146/annurev.ecolsys.38.091206.095733

10.1111/j.1365-294X.2009.04501.x

10.1111/j.0014-3820.2002.tb00153.x

10.1111/j.1461-0248.2004.00715.x

10.1111/j.1558-5646.1998.tb05153.x

10.1371/journal.pgen.1000930

10.1111/j.1558-5646.1989.tb02570.x

10.1186/1742-9994-1-5

10.1093/genetics/145.3.759

10.1038/nature03800

10.1111/j.1558-5646.2007.00027.x

10.1016/j.tree.2004.01.003

10.1111/j.1365-2311.2009.01136.x

10.1146/annurev.ecolsys.34.011802.132412

10.1016/j.tree.2011.04.005

10.1186/1472-6785-9-17

Slatkin M., 1975, Gene flow and selection in a 2‐locus system, Genetics, 81, 787, 10.1093/genetics/81.4.787

10.1111/j.1365-294X.2011.05350.x

10.1111/j.1558-5646.2009.00877.x

10.1080/07352689309701903

10.1073/pnas.97.13.7051

10.1146/annurev.arplant.043008.092039

10.2307/25065732

10.1002/tax.595006

Stebbins G.L., 1971, Chromosomal Evolution in Higher Plants

Stebbins G.L., 1984, Polyploidy and the distribution of the Arctic‐Alpine Flora – new evidence and a new approach, Bot. Helv., 94, 1

10.1111/j.1558-5646.2008.00599.x

10.1111/j.1365-294X.2010.04997.x

10.1038/sj.hdy.6800519

10.1111/j.0014-3820.2006.tb01202.x

10.1111/j.1558-5646.1991.tb04400.x

10.3732/ajb.0800299

10.1111/j.1365-294X.2005.02794.x

10.1111/j.1558-5646.2009.00846.x

10.1111/j.1420-9101.2008.01627.x

10.1126/science.1169766

10.1371/journal.pbio.0030285

10.1073/pnas.95.20.11757

10.1016/j.cub.2006.09.020

10.1073/pnas.0901397106

10.1086/285180

10.1111/j.1469-8137.2010.03234.x

10.1073/pnas.0502300102

10.1038/341415a0

10.1098/rstb.2010.0023

10.1111/j.1365-294X.2009.04471.x

10.1111/j.1365-294X.2008.03755.x

10.1073/pnas.0811575106

10.1046/j.1420-9101.2001.00335.x

10.1111/j.0014-3820.2006.tb01139.x

10.1186/1471-2148-9-83