Hybrid triboelectric nanogenerator for harvesting water wave energy and as a self-powered distress signal emitter

Nano Energy - Tập 9 - Trang 186-195 - 2014
Yuanjie Su1,2, Xiaonan Wen1, Guang Zhu3, Jin Yang1, Jun Chen3, Peng Bai3, Zhiming Wu2, Yadong Jiang2, Zhong Lin Wang3,4
1School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245, USA
2State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
3School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
4Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, China

Tài liệu tham khảo

Wang, 2013, ACS Nano, 7, 9533, 10.1021/nn404614z Scruggs, 2009, Science, 323, 1176, 10.1126/science.1168245 Boyle, 1996, Renewable Energy Khaligh, 2009 Jouanne, 2006, Mech. Eng. Mag., 128, 24, 10.1115/1.2006-DEC-1 Henderson, 2006, Renew. Energy, 31, 271, 10.1016/j.renene.2005.08.021 L. Drouen, J.F. Charpentier, E. Semail, S. Clenet, Proceedings of Oceans 2007 Europe, vol. 18–21, 2007, pp. 1–6. Wolfbrandt, 2007, IEEE Trans. Magn., 42, 1812, 10.1109/TMAG.2006.874593 Wang, 2006, Science, 312, 242, 10.1126/science.1124005 Akaydin, 2010, Intell. Mater. Syst. Struct., 21, 1263, 10.1177/1045389X10366317 Allen, 2001, J. Fluid Struct., 15, 629, 10.1006/jfls.2000.0355 Taylor, 2001, IEEE J. Ocean Eng., 26, 539, 10.1109/48.972090 Fan, 2012, Nano Energy, 1, 328, 10.1016/j.nanoen.2012.01.004 Yang, 2013, Nano Res., 6, 880, 10.1007/s12274-013-0364-0 Zhu, 2013, Nano Lett., 13, 847, 10.1021/nl4001053 Zhang, 2014, Adv. Funct. Mater., 24, 1401, 10.1002/adfm.201302453 Yang, 2014, ACS Nano, 8, 2649, 10.1021/nn4063616 Zhang, 2013, Nano Energy, 2, 1019, 10.1016/j.nanoen.2013.03.024 Zhang, 2013, Nano Energy, 2, 693, 10.1016/j.nanoen.2013.08.004 Su, 2013, ACS Appl. Mater. Interfaces, 6, 553, 10.1021/am404611h Lin, 2013, Angew. Chem. Int. Ed., 125, 5169, 10.1002/ange.201300437 Lin, 2013, ACS Nano, 7, 4554, 10.1021/nn401256w Yang, 2013, ACS Nano, 7, 7342, 10.1021/nn403021m Lin, 2013, ACS Nano, 7, 8266, 10.1021/nn4037514 Su, 2014, ACS Nano, 8, 3843, 10.1021/nn500695q Yang, 2013, Nano Lett., 13, 803, 10.1021/nl3046188 Su, 2013, Nanotechnology, 24, 295401, 10.1088/0957-4484/24/29/295401 Yang, 2013, ACS Nano, 7, 11317, 10.1021/nn405175z Xue, 2012, Nano Lett., 12, 5048, 10.1021/nl302879t Wen, 2014, ACS Nano, 8, 7405, 10.1021/nn502618f Yang, 2014, Adv. Energy Mater., 4, 1301322, 10.1002/aenm.201301322 Chen, 2013, Adv. Mater., 25, 6094, 10.1002/adma.201302397 Yang, 2013, ACS Nano, 7, 9461, 10.1021/nn4043157 Lin, 2013, Angew. Chem. Int. Ed., 125, 12777, 10.1002/ange.201307249 Cheng, 2014, ACS Nano, 8, 1932, 10.1021/nn406565k Zhu, 2014, ACS Nano Saurenbach, 1992, Langmuir, 8, 1199, 10.1021/la00040a030