Hybrid precoding for mmWave massive MU-MIMO systems with overlapped subarray: A modified GLRAM approach
Tài liệu tham khảo
Jr, 2016, An overview of signal processing techniques for millimeter wave MIMO systems, IEEE J. Sel. Top. Sign. Proces., 10, 436, 10.1109/JSTSP.2016.2523924
Larsson, 2014, Massive MIMO for next generation wireless systems, IEEE Commun. Mag., 52, 186, 10.1109/MCOM.2014.6736761
Zheng, 2015, Survey of large-scale MIMO systems, IEEE Commun. Surv. Tutor., 17, 1738, 10.1109/COMST.2015.2425294
Wei, 2014, Key elements to enable millimeter wave communications for 5G wireless systems, IEEE Wirel. Commun., 21, 136, 10.1109/MWC.2014.7000981
M. Samimi, K. Wang, Y. Azar, G.N. Wang, R. Mayzus, H. Zhao, J.K. Schulz, S. Sun, F. Gutierrez, Jr., T.S. Rappaport, 28 GHz angle of arrival and angle of departure analysis for outdoor cellular communications using steerable beam antennas in New York City, in: 2013 IEEE 77th Vehicular Technology Conference (VTC Spring), Jun. 2013, pp. 1–6.
Alkhateeb, 2014, MIMO precoding and combining solutions for millimeter-wave systems, IEEE Commun. Mag., 52, 122, 10.1109/MCOM.2014.6979963
B. Yin, S. Abu-Surra, G. Xu, T. Henige, E. Pisek, Z. Pi, J.R. Cavallaro, High-throughput beamforming receiver for millimeter wave mobile communication, in: 2013 IEEE Global Communications Conference (GLOBECOM), Dec. 2013, pp. 3697–3702.
Molu, 2018, Low-complexity and robust hybrid beamforming design for multi-antenna communication systems, IEEE Trans. Wireless Commun., 17, 1445, 10.1109/TWC.2017.2778258
Han, 2015, Large-scale antenna systems with hybrid precoding analog and digital beamforming for millimeter wave 5G, IEEE Commun. Mag., 53, 186, 10.1109/MCOM.2015.7010533
Ayach, 2014, Spatially sparse precoding in millimeter wave MIMO systems, IEEE Trans. Wireless Commun., 13, 1499, 10.1109/TWC.2014.011714.130846
Y. Xing, Y. Chen, L. Yang, MMSE-based wideband hybrid precoding for massive MIMO systems, in: 2016 International Conference on Information and Communication Technology Convergence (ICTC), Oct. 2016, pp. 19–21.
Liang, 2014, Low-complexity hybrid precoding in massive multiuser MIMO systems, IEEE Wirel. Commun. Lett., 3, 653, 10.1109/LWC.2014.2363831
Ni, 2016, Hybrid block diagonalization for massive multiuser MIMO systems, IEEE Trans. Commun., 64, 201, 10.1109/TCOMM.2015.2502954
Zhang, 2005, Variable-phase-shift-based RF-baseband codesign for MIMO antenna selection, IEEE Trans. Signal Process., 53, 4091, 10.1109/TSP.2005.857024
Gao, 2016, Energy-efficient hybrid analog and digital precoding for mmwave MIMO systems with large antenna arrays, IEEE J. Sel. Areas Commun., 34, 998, 10.1109/JSAC.2016.2549418
Y. Guo, L. Li, X. Wen, W. Chen, Z. Han, Sub-array based hybrid precoding design for downlink millimeter-wave multiuser massive MIMO systems, in: International Conference on Wireless Communications and Signal Processing (WCSP), Oct. 2017, pp. 1–4.
Spencer, 2004, Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels, IEEE Trans. Signal Process., 52, 461, 10.1109/TSP.2003.821107
Song, 2017, Overlapped sub-array based hybrid beamforming for millimeter wave multi-user massive MIMO, IEEE Signal Process. Lett., 24, 550, 10.1109/LSP.2017.2681689
Sohrabi, 2016, Hybrid digital and analog beamforming design for large-scale antenna arrays, IEEE J. Sel. Top. Sign. Proces., 10, 501, 10.1109/JSTSP.2016.2520912
Li, 2019, Machine learning-based spectrum efficiency hybrid precoding with lens array and low-resolution ADCs, IEEE Access, 99, 117986, 10.1109/ACCESS.2019.2937209
Ahmed, 2018, A survey on hybrid beamforming techniques in 5G: Architecture and system model perspectives, IEEE Commun. Surv. Tutor., 20, 3060, 10.1109/COMST.2018.2843719
J.Ye, 2004, Generalized low rank approximations of matrices, Mach. Learn., 61, 167
Golub, 1996