Hybrid multi-scale basalt fiber-epoxy composite laminate reinforced with Electrospun polyurethane nanofibers containing carbon nanotubes

Fibers and Polymers - Tập 15 - Trang 1295-1302 - 2014
I. D. G. Ary Subagia1, Zhe Jiang2, Leonard D. Tijing3, Yonjig Kim4,5, Cheol Sang Kim2,4, Jae Kyoo Lim4,5, Ho Kyong Shon3
1Mechanical Engineering, Faculty of Udayana University, Denpasar, Indonesia
2Department of Bionanosystem Engineering, Graduate School, Chonbuk National University, Jeonju, Korea
3School of Civil and Environmental Engineering, University of Technology, Sydney (UTS), Broadway, Australia
4Division of Mechanical Design Engineering, Chonbuk National University, Jeonju, Korea
5Advanced Wind Power System Research Center, Chonbuk National University, Jeonju, Korea

Tóm tắt

In this study, we report the fabrication and evaluation of a hybrid multi-scale basalt fiber/epoxy composite laminate reinforced with layers of electrospun carbon nanotube/polyurethane (CNT/PU) nanofibers. Electrospun polyurethane mats containing 1, 3 and 5 wt% carbon nanotubes (CNTs) were interleaved between layers of basalt fibers laminated with epoxy through vacuum-assisted resin transfer molding (VARTM) process. The strength and stiffness of composites for each configuration were tested by tensile and flexural tests, and SEM analysis was conducted to observe the morphology of the composites. The results showed increase in tensile strength (4–13 %) and tensile modulus (6–20 %), and also increase in flexural strength (6.5–17.3 %) and stiffness of the hybrid composites with the increase of CNT content in PU nanofibers. The use of surfactant to disperse CNTs in the electrospun PU reinforcement resulted to the highest increase in both tensile and flexural properties, which is attributed to the homogeneous dispersion of CNTs in the PU nanofibers and the high surface area of the nanofibers themselves. Here, the use of multi-scale reinforcement fillers with good and homogeneous dispersion for epoxy-based laminates showed increased mechanical performance of the hybrid composite laminates.

Tài liệu tham khảo

E. Guades, T. Aravinthan, M. Islam, and A. Manalo, Compos. Struct., 94, 1932 (2012). Q. Chen, L. Zhang, A. Rahman, Z. Zhou, X.-F. Wu, and H. Fong, Compos. Part A-Appl. S., 42, 2036 (2011). P. N. B. Reis, J. A. M. Ferreira, J. D. M. Costa, and M. J. Santos, Fiber. Polym., 13, 1292 (2012). A. P. Mouritz and A. G. Gibson, Fire Properties of Polymer Composite Materials, in Springer, 2006. K. Singha, Int. J. Text. Sci., 1, 19 (2012). A. Mahmood, R. H. Gong, and I. Porat, Fiber. Polym., 14, 591 (2013). B. Wei, S. Song, and H. Cao, Mater. Des., 32, 4180 (2011). I. D. G. Ary Subagia, L. D. Tijing, Y. Kim, C. S. Kim, F. P. Vista, and H. K. Shon, Compos. Part B-Eng., In press 58, 611 (2014). K. Bilge, E. Ozden-Yenigun, E. Simsek, Y. Z. Menceloglu, and M. Papila, Compos. Sci. Technol., 72, 1639 (2012). M. Shokrieh and M. Memar, Appl. Compos. Mater., 17, 121 (2010). H. Zhu, B. Wu, D. Li, D. Zhang, and Y. Chen, J. Mater. Sci. Technol., 27, 69 (2011). V. Fiore, G. Di Bella, and A. Valenza, Mater. Des., 32, 2091 (2011). I. D. G. Ary Subagia, Y. Kim, L. D. Tijing, C. S. Kim, and H. K. Shon, Compos. Part B-Eng., 58, 251 (2014). W. Chen, H. B. Shen, M. L. Auad, C. Z. Huang, and S. Nutt, Compos. Part A-Appl. S., 40, 1082 (2009). E. Bekyarova, E. T. Thostenson, A. Yu, H. Kim, J. Gao, J. Tang, Langmuir, 23, 3970 (2007). E. Bekyarova, E. T. Thostenson, A. Yu, M. E. Itkis, D. Fakhrutdinov, T. W. Chou, J. Phys. Chem. C, 111, 17865 (2007). D. Dean, A. M. Obore, S. Richmond, and E. Nyairo, Compos. Sci. Technol., 66, 2135 (2006). B. Fiedler, F. H. Gojny, M. H. G. Wichmann, M. C. M. Nolte, and K. Schulte, Compos. Sci. Technol., 66, 3115 (2006). W. Chen, H. Shen, M. L. Auad, C. Huang, and S. Nutt, Compos. Part A-Appl. S., 40, 1082 (2009). S. Agarwal, A. Greiner, and J. H. Wendorff, Adv. Funct. Mater., 19, 2863 (2009). A. Baji, Y.-W. Mai, S.-C. Wong, M. Abtahi, and P. Chen, Compos. Sci. Technol., 70, 703 (2010). N. Bhardwaj and S. C. Kundu, Biotechnol. Adv., 28, 325 (2010). K. Molnar, L. M. Vas, and T. Czigany, Compos. Part BEng., 43, 15 (2012). L. D. Tijing, J.-S. Choi, S. Lee, S.-H. Kim, and H. K. Shon, J. Membr. Sci., 453, 435 (2014). Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, Compos. Sci. Technol., 63, 2223 (2003). Q. Chen, L. F. Zhang, A. Rahman, Z. P. Zhou, X. F. Wu, and H. Fong, Compos. Part A-Appl. S., 42, 2036 (2011). A. D. Kelkar, R. Mohan, R. Bolick, and S. Shendokar, Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater., 168, 85 (2010). J. Zhang, T. Lin, and X. G. Wang, Compos. Sci. Technol., 70, 1660 (2010). S. Sihn, R. Y. Kim, W. Huh, K. H. Lee, and A. K. Roy, Compos. Sci. Technol., 68, 673 (2008). R. Palazzetti, A. Zucchelli, C. Gualandi, M. L. Focarete, L. Donati, and G. Minak, Compos. Struct., 94, 571 (2012). W. H. Yang, S. H. Yu, R. Sun, and R. X. Du, Ceram. Int., 38, 3553 (2012). L. D. Yan, S. X. Si, Y. Chen, T. Yuan, H. J. Fan, Y. Y. Yao, Fiber. Polym., 12, 207 (2011). L. D. Tijing, M. T. G. Ruelo, A. Amarjargal, H. R. Pant, C. H. Park, D. W. Kim, Chem. Eng. J., 197, 41 (2012). F. A. Sheikh, M. A. Kanjwal, S. Saran, W. J. Chung, and H. Kim, Appl. Surf. Sci., 257, 3020 (2011). S. Iijima, Nature, 354, 56 (1991). L. D. Tijing, C. H. Park, S. J. Kang, A. Amarjargal, T. H. Kim, H. R. Pant, Appl. Surf. Sci., 264, 453 (2013). A. D. Kelkar, R. Mohan, R. Bolick, and S. Shendokar, Mater. Sci. Eng.: B, 168, 85 (2010). ASTM-D638-10, “Standard Test Method for Tensile Properties of Plastics”, ASTM International: West Conshohocken, PA 19428-2959, United States, 2008. ASTM-D790-10, “Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials”, ASTM International: West Conshohocken, PA 19428-2959, United States, 1–11 (2010). S. J. Han and D. D. L. Chung, Compos. Sci. Technol., 71, 1944 (2011). W. Chen, X. M. Tao, and Y. Y. Liu, Compos. Sci. Technol., 66, 3029 (2006). L. D. Tijing, W. Choi, Z. Jiang, A. Amarjargal, C.-H. Park, H. R. Pant, Curr. Appl. Phys., 13, 1247 (2013). T. Ramanathan, H. Liu, and L. C. Brinson, J. Polym. Sci. Part B-Polym. Phys., 43, 2269 (2005). D. R. Bortz, C. Merino, and I. Martin-Gullon, Compos. Part A-Appl. S., 42, 1584 (2011). J. S. Jeong, J. S. Moon, S. Y. Jeon, J. H. Park, P. S. Alegaonkar, and J. B. Yoo, Thin Solid Films, 515, 5136 (2007). H. C. Kuan, C. C. M. Ma, W. P. Chang, S. M. Yuen, H. H. Wu, and T. M. Lee, Compos. Sci. Technol., 65, 1703 (2005). K. L. White and H. J. Sue, Polymer, 53, 37 (2012). J. H. Lee, K. Y. Rhee, and S. J. Park, Mater. Sci. Eng. AStruct. Mater. Prop. Microstruct. Process., 527, 6838 (2010). S. Sihn, R. Y. Kim, W. Huh, K.-H. Lee, and A. K. Roy, Compos. Sci. Technol., 68, 673 (2008). L. D. Tijing, M. T. G. Ruelo, A. Amarjargal, H. R. Pant, C. H. Park, and C. S. Kim, Mater. Chem. Phys., 134, 557 (2012). L. D. Tijing, C. H. Park, W. L. Choi, M. T. G. Ruelo, A. Amarjargal, H. R. Pant, Compos. Part B-Eng., 44, 613 (2012). M. Alexandre and P. Dubois, Mater. Sci. Eng. R-Reports, 28, 1 (2000). L. Liu, Z. M. Huang, C. L. He, and X. J. Han, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 435, 309 (2006). W. Chen, H. Lu, and S. R. Nutt, Compos. Sci. Technol., 68, 2535 (2008). H. Kim, Fiber. Polym., 14, 1311 (2013).