Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Phương pháp sấy lai của lá Murraya koenigii: hoạt động chống tiểu đường và chống lão hóa
Tóm tắt
Nghiên cứu này nhằm so sánh hiệu quả chống tiểu đường và chống lão hóa của lá Murraya koenigii bằng cách sử dụng phương pháp sấy không khí nóng đối lưu (40, 50 và 60 °C) và hai phương pháp sấy lai thông qua sấy chân không vi sóng (6, 9 và 12 W/g) và sấy trước bằng không khí nóng đối lưu tiếp sau bằng sấy hoàn thiện chân không vi sóng (50 °C tiếp theo là 9 W/g), bên cạnh phương pháp sấy đông khô, được sử dụng như một phương pháp kiểm soát. Hoạt động chống tiểu đường được đánh giá bằng phương pháp ức chế α-amylase và α-glucosidase, trong khi hoạt động chống lão hóa được đo bằng hiệu ứng ức chế acetylcholinesterase (AChE) và butyrylcholinesterase (BChE). Kết quả cho thấy rằng lá M. koenigii đã sấy khô có mức độ chọn lọc cao hơn đối với ức chế α-glucosidase với tỷ lệ dao động từ 7,92 đến 23,57% ở nồng độ 62,52 ± 22,18 đến 20,39 ± 2,01 mg lá khô/mL. Về hoạt động chống lão hóa, hiệu ứng ức chế AChE rõ ràng yếu hơn đáng kể so với ức chế BChE, cho thấy rằng lá M. koenigii đã sấy khô có tính chọn lọc cao hơn đối với ức chế BChE với tỷ lệ dao động từ 79,47 đến 87,07%. Hơn nữa, mô hình Page và các mô hình khuếch tán cho thấy sự phù hợp tốt của mô hình với dữ liệu thực nghiệm về động học sấy với hệ số xác định cao nhất (0,9996; 0,9995) và các giá trị sai số trung bình căn bậc hai thấp nhất (0,0102; 0,0090) cũng như hệ số Chi-bình quân (0,0010; 0,0008). Tổng thể, phương pháp sấy chân không vi sóng là phương pháp sấy được khuyến nghị để sử dụng cho lá M. koenigii do kết quả đầy hứa hẹn đạt được cho việc ức chế α-glucosidase và BChE.
Từ khóa
#Murraya koenigii #chống tiểu đường #chống lão hóa #sấy lai #vi sóng #ức chế α-amylase #ức chế α-glucosidaseTài liệu tham khảo
World health organization (2016) W. global report on diabetes, vol 978. https://www.who.int/about/licensing/
Thomson M, Al-Qattan KK, Divya JS, Ali M (2016) Anti-diabetic and anti-oxidant potential of aged garlic extract (AGE) in streptozotocin-induced diabetic rats. BMC Complement Altern Med 16(1):1–9. https://doi.org/10.1186/s12906-016-0992-5
Manosroi A, Jantrawut P, Akihisa T, Manosroi W, Manosroi J (2010) In vitro anti-aging activities of Terminalia chebula gall extract. Pharm Biol 48(4):469–481. https://doi.org/10.3109/13880200903586286
Podsȩdek A, Majewska I, Redzynia M, Sosnowska D, Koziołkiewicz M (2014) In vitro inhibitory effect on digestive enzymes and antioxidant potential of commonly consumed fruits. J Agric Food Chem 62(20):4610–4617. https://doi.org/10.1021/jf5008264
Anuya AR, Abhay C (2014) Evaluation of alpha-amylase and alpha-glucosidase inhibitory activities of Rhizophora mucronata. Int J Pharm Stud Res E 5(6):2261–2265. https://doi.org/10.13040/IJPSR.0975-8232.5(6).2261-65
Kumar S, Kumar V, Rana M, Kumar D (2012) Enzymes inhibitors from plants: an alternate approach to treat diabetes. Pharmacogn Commun 2(2):18–33. https://doi.org/10.5530/pc.2012.2.4
Ramsay RR, Tipton KF (2017) Assessment of enzyme inhibition: a review with examples from the development of monoamine oxidase and cholinesterase inhibitory drugs. Molecules. https://doi.org/10.3390/molecules22071192
Zhao T, Ding KM, Zhang L, Cheng XM, Wang CH, Wang ZT (2013) Acetylcholinesterase and butyrylcholinesterase inhibitory activities of β-carboline and quinoline alkaloids derivatives from the plants of genus peganum. J Chem. https://doi.org/10.1155/2013/717232
Kostelnik A, Pohanka M (2018) Inhibition of acetylcholinesterase and butyrylcholinesterase by a plant secondary metabolite boldine. Biomed Res Int. https://doi.org/10.1155/2018/9634349
Jain V, Momin M, Laddha K (2012) Murraya koenigii: an updated review. Int J Ayurvedic Herb Med 2:607–627
Handral HK, Pandith A, Shruthi SD (2012) A review on Murraya koenigii: multipotential medicinal plant. Asian J Pharm Clin Res 5(4):5–14. https://doi.org/10.20959/wjpps20168-7309
Ghasemzadeh A, Jaafar HZE, Karimi E, Rahmat A (2014) Optimization of ultrasound-assisted extraction of flavonoid compounds and their pharmaceutical activity from curry leaf (Murraya koenigii L.) using response surface methodology. BMC Complement Altern Med 14(318):1–10
Rababah TM, Al-U’ Datt M, Alhamad M et al (2015) Effects of drying process on total phenolics, antioxidant activity and flavonoid contents of common mediterranean herbs. Int J Agric Biol Eng 8(2):145–150. https://doi.org/10.3965/j.ijabe.20150802.1496
Betoret E, Calabuig-Jiménez L, Barrera C, Rosa MD (2016) Sustainable drying technologies for the development of functional foods and preservation of bioactive compounds. In: Olvera J del RBT-SDT (ed) Rijeka: InTech Ch. 03. https://doi.org/10.5772/64191
Tan JJY, Lim YY, Siow LF, Tan JBL (2015) Effects of drying on polyphenol oxidase and antioxidant activity of morus alba leaves. J Food Process Preserv 39(6):2811–2819. https://doi.org/10.1111/jfpp.12532
Zhang M, Bhandari B, Fang Z (2017) Handbook of drying of vegetables and vegetable products
Khek CH, Chong C, Figiel A, Szummy A, Wojdyło A (2004) Drying kinetics of medicinal herbs. pp 1–2
Scaman CH, Durance TD, Drummond L, Sun D-W (2014) Chapter 23 - Combined Microwave Vacuum Drying. In: Second E (ed) Sun D-WBT-ET for FP. Academic Press, San Diego, pp 427–445. https://doi.org/10.1016/B978-0-12-411479-1.00023-1
Calín-Sánchez Á, Figiel A, Wojdyło A, Szarycz M, Carbonell-Barrachina ÁA (2014) Drying of garlic slices using convective pre-drying and vacuum-microwave finishing drying: kinetics, energy consumption, and quality studies. Food Bioprocess Technol 7(2):398–408. https://doi.org/10.1007/s11947-013-1062-3
Chua LYW, Chua BL, Figiel A et al. (2019) Drying of phyla nodiflora leaves: antioxidant activity, volatile and phytosterol content, energy consumption, and quality studies. Process 210
Chua LYW, Chua BL, Figiel A et al. (2019) Antioxidant activity, and volatile and phytosterol contents of strobilanthes crispus dehydrated using conventional and vacuum microwave drying methods antioxidant activity, and volatile and phytosterol contents of strobilanthes crispus dehydrated using con. Molecules
Wojdyło A, Lech K, Nowicka P, Hernandez F, Figiel A, Carbonell-Barrachina AA (2019) Influence of different drying techniques on phenolic compounds, antioxidant capacity and colour of Ziziphus jujube mill. Fruits. Molecules 24(13):1–15. https://doi.org/10.3390/molecules24132361
Chua BL, Poh J, Ameena ALI (2018) Extraction kinetic of Ziziphus jujuba fruit using solid-liquid extraction. J Eng Sci Technol 13(Special issue on the seventh eureca 2016):27–39
Choo CO, Chua BL, Figiel A, Ja K, Wojdy A (2020) Hybrid drying of Murraya koenigii leaves: energy consumption, antioxidant capacity, profiling of volatile compounds and quality studies. Processes. https://doi.org/10.3390/pr8020240
Figiel A, Michalska A (2017) Overall quality of fruits and vegetables products affected by the drying processes with the assistance of vacuum-microwaves. Int J Mol Sci. https://doi.org/10.3390/ijms18010071
Calín-Sanchez Á, Figiel A, Szarycz M, Lech K, Nuncio-Jáuregui N, Carbonell-Barrachina ÁA (2014) Drying kinetics and energy consumption in the dehydration of pomegranate (Punica granatum L.) arils and rind. Food Bioprocess Technol 7(7):2071–2083. https://doi.org/10.1007/s11947-013-1222-5
Cano-Lamadrid M, Lech K, Calín-Sánchez Á et al (2018) Quality of pomegranate pomace as affected by drying method. J Food Sci Technol 55(3):1074–1082. https://doi.org/10.1007/s13197-017-3022-9
Inyang UE, Oboh IO, Etuk BR (2018) kinetic models for drying techniques—food materials. Adv Chem Eng Sci 08(02):27–48. https://doi.org/10.4236/aces.2018.82003
Onwude DI, Hashim N, Janius RB, Nawi NM, Abdan K (2016) Modeling the thin-layer drying of fruits and vegetables: a review. Compr Rev Food Sci Food Saf 15(3):599–618. https://doi.org/10.1111/1541-4337.12196
Kucuk H, Midilli A, Kilic A, Dincer I (2014) A review on thin-layer drying-curve equations. Dry Technol 32(7):757–773. https://doi.org/10.1080/07373937.2013.873047
Hii CL, Law CL, Cloke M (2009) Modeling using a new thin layer drying model and product quality of cocoa. J Food Eng 90(2):191–198. https://doi.org/10.1016/j.jfoodeng.2008.06.022
Ali A, Chua BL, Ashok GA (2018) Effective extraction of natural antioxidants from piper betle with the aid of ultrasound: drying and extraction kinetics. J Eng Sci Technol 13(Special issue on the eighth eureca 2017):1–16
Nair SS, Kavrekar V, Mishra A (2013) In vitro studies on alpha amylase and alpha glucosidase inhibitory activities of selected plant extracts. Eur J Exp Biol 3(1):128–132
González-Muñoz A, Quesille-Villalobos AM, Fuentealba C, Shetty K, Gálvez Ranilla L (2013) Potential of Chilean native corn (Zea mays L.) accessions as natural sources of phenolic antioxidants and in vitro bioactivity for hyperglycemia and hypertension management. J Agric Food Chem 61(46):10995–11007. https://doi.org/10.1021/jf403237p
Hasbal G, Yilmaz-Ozden T, Can A (2015) Antioxidant and antiacetylcholinesterase activities of Sorbus torminalis (L.) Crantz (wild service tree) fruits. J Food Drug Anal 23(1):57–62. https://doi.org/10.1016/j.jfda.2014.06.006
Chua LYW, Chua BL, Figiel A et al (2019) Characterisation of the convective hot-air drying and vacuum microwave drying of cassia alata: antioxidant activity, essential oil volatile composition and quality studies. Molecules. https://doi.org/10.3390/molecules24081625
Floris AVDL, Peter LL, Reinier PA, Eloy HVDL, Guy ER, Chris VW (2005) Alpha-glucosidase inhibitors for patients with type 2 diabetes. Diabetes Care 28(1):154–163
Pezzementi L, Nachon F, Chatonnet A (2011) Evolution of acetylcholinesterase and butyrylcholinesterase in the vertebrates: an atypical butyrylcholinesterase from the medaka oryzias latipes. PLoS ONE. https://doi.org/10.1371/journal.pone.0017396
Halidou I, Touré A, Nguyen L, Bchetnia A, El Jani B (2013) Influence of GaN template thickness and morphology on AlxGa1-xN luminescence properties. Opt Mater (Amst) 35(5):988–992. https://doi.org/10.1016/j.optmat.2012.12.009