Hybrid differential evolution and particle swarm optimization for optimal well placement

Computational Geosciences - Tập 17 Số 2 - Trang 249-268 - 2013
E. Nwankwor1, Atulya K. Nagar1, David Reid1
1Centre for Applicable Mathematics and Systems Science, Department of Mathematics and Computer Science, Liverpool Hope University, Liverpool, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aitokhuehi, I., Durlofsky, L.J., Artus, V., Yeten, B., Aziz, K.: Optimization of advanced well type and performance. In: 9th European Conference on the Mathematics of Oil Recovery, Cannes (2004)

Angeline, P.J.: Using selection to improve particle swarm optimization. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC), pp. 84–89. Anchorage, AL, USA (1998)

Bangerth, B.L., Klie, W.H., Wheeler, M.F., Stoffa, P.L., Sen, M.K.: On optimization algorithms for the reservoir oil well placement problem. Comput. Geosci. 10, 303–319 (2006)

Banks, A., Vincent, J., Anyakoha, C.: A review of particle swarm optimization. Part II: hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications. Nat. Comput.: Int. J. 7(1), 109–124 (2008)

Beckner, B.L., Song, X.: Field development planning using simulated annealing—optimal economic well scheduling and placement. In: SPE Annual Technical Conference and Exhibition (SPE 30650), Dallas (1995)

Bittencourt, A.C., Horne, R.N.: Reservoir development and design optimization. In: SPE Annual Tech. Conf. and Exhibtion (SPE 38895), San Antonio (1997)

Blackwell, T., Bentley, P.J.: Don’t push me! collision-avoiding swarms. In: IEEE Congress on Evolutionary Comput. pp. 1691–1696. Honolulu, Hawaii, USA (2002)

Bouzarkouna, Z., Ding, D.Y., Auger, A.: Well placement optimization with the covariance matrix adaptation evolution strategy and meta-models. Comput. Geosci. 16, 75–92 (2011)

Braendler, D., Hendtlass, T.: The suitability of particle swarm optimisation for training neural hardware. In: International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems, IEA/AIE, pp. 190–199. Springer, NY (2002)

Brandstatter, B., Baumgartner, U.: Particle swarm optimization–mass-spring system analogon. IEEE Trans. Magn. 38, 97–1000 (2002)

Centilmen, A., Ertekin, T., Grader, A.S.: Applications of neural networks in multiwell field development. In: SPE Annual Technical Conference and Exhibition (SPE 56433), Houston (1999)

Chakrabarti, R., Chattopadhyay, P.K., Basu, M., Panigrahi, C.K.: Particle swarm optimization technique for dynamic economic dispatch. J. Inst. Eng. India 87, 48–54 (2006)

Ciaurri, D.E., Mukerji, T., Durlofsky, L.J.: Derivative-free Optimization for Oil Field Operations Studies in Comput. Intell., vol. 359, pp. 19–55. Computational Optimization and Applications in Engr. and Ind. (2011)

Clerc, M.: Particle Swarm Optimization. iSTE, London (2006)

Das, S., Konar, A.: A swarm intelligence approach to the synthesis of two-dimensional IIR filters. Eng. Appl. Artif. Intell. 20(8), 1086–1096 (2007). doi: 10.1016/j.engappai.2007.02.004 . Accessed 18 Mar 2011

Das, S., Abraham, A., Konar, A.: Particle Swarm Optimization and Differential Evolution Algorithms: Technical Analysis, Applications and Hybridization Perspectives. www.softcomputing.net/aciis.pdf . Accessed: 18 Mar 2011

Davendra, D., Zenlinka, I., Onwubolu, G.: Hybrid Differential Evolution—Scatter Search Algorithm for Permutative Optimization Evolutionary Computation, InTech, Vienna, Austria (2009)

Deep, K., Bansal, J.C.: Hybridization of particle swarm optimization with quadratic approximation. J. Oper. Res. 46, 3–24 (2009)

Deep, K., Das, K.N.: Quadratic approximation based hybrid genetic algorithm for function optimization. Appl. Math. Comput. 203(1), 86–98 (2008)

Dong, X., Wu, Z., Dong, C., Chen, K., Wang, H.: Optimization of vertical well placement by using a hybrid particle swarm optimization. Wuhan Univ. J. Nat. Sci. 16(3), 237–240 (2011)

Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp. 39–43. Nagoya, Japan (1995)

Engelbrecht, A.P.: Fundamentals of Computational Swarm Intel. Wiley, West Sussex (2005)

Farshi, M.M.: Improving genetic algorithms for optimum well placement. MSc. Thesis, Stanford University (2008)

Gong, T., Tuson, A.L.: Particle swarm optimization for quadratic assignment problems—a forma analysis approach. Int. J. Comput. Intell. Res. 4, 177–185 (2008)

Grimaccia, F., Mussetta, M., Zich, R.E.: Genetical swarm optimization: self-adaptive hybrid evolutionary algorithm for electromagnetics. IEEE Trans. Antennas Propag. 55(3), 781–785 (2007)

Guyaguler, B., Horne, R.N.: Uncertainty assessment of well placement optimization. In: SPE Annual Tech. Conf. and Exhibition (SPE 71625), New Orleans, LA (2001)

Hajizadeh, Y., Christie, M., Demyanov, V.: History Matching with Differential Evolution Approach; A Look at New Search Strategies SPE EUROPEC/EAGE Annual Conference and Exhibition, Barcelona, Spain ISBN 978–90–73781–86–3 (2010). doi: 10.2118/130253-MS

Haykin, S.: Neural Networks. Macmillan, New York (1999)

Hendtlass, T., Randall, M.: A survey of ant colony and particle swarm metaheuristics and their application to discrete optimization problems. In: Proc. of the Inaugural Workshop on Artificial Life (AL’01), pp. 15–25 (2001)

Hendtlass, T.: A combined swarm differential evolution algorithm for optimization problems. In: Proceedings of the 14th Int. Conf. on Ind. and Eng. App. of Artificial Intell. and Expert Systems. Lecture Notes in Computer Science, vol. 2070, pp. 11–18 Springer, Berlin (2001)

Higashi, N., Iba, H.: Particle swarm optimization with Gaussian mutation. In: Proceedings of the IEEE Swarm Intell. Symposium, pp. 72–79. Indianapolis, IN (2003)

Jian, M., Chen, Y.: Introducing recombination with dynamic linkage discovery to particle swarm optimization. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 85–86 (2006)

Juang, C.F.: A hybrid of genetic algorithm and particle swarm optimization for recurrent network design. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 34(2), 997–1006 (2004)

Kennedy, J.: Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance. In: Proceedings of Cong. of Evolutionary Computation, vol. 3, pp. 1931–1938. IEEE, New York (1999)

Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE, Neural Networks Council Staff, IEEE Neural Networks Council (eds.) Proc. IEEE International Conference on Neural Networks, pp. 1942–1948. IEEE, Los Alamitos (1995)

Kosmidis, V.D., Perkins, J.D., Pistikopoulos, E.N.: A mixed integer optimization formulation for the well scheduling problem on petroleum fields. Comput. Chem. Eng. 29(7), 1523–1541 (2005)

Krink, T., Vesterstrøm, J.S., Riget, J.: Particle swarm optimization with spatial particle extension. In: Proceedings of the 4th Congress on Evolutionary Computation, pp. 1474–1479 (2002)

Lampinen, J., Zelinka, I.: Mechanical engineering design by differential evolution. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimisation, pp. 127–146. McGraw-Hill, London (1999)

Lampinen, J.: A constraint handling approach for the differential evolution algorithm. In: Proc. the Congress on Evolutionary Computation, vol. 2, pp. 1468–1473 (2002)

Litvak, M., Gane, B., Williams, G., Mansfield, M., Angert, P., Macdonald, C., McMurray, L., Skinner, R., Walker, G.J.: Field development optimization technology. Paper SPE 106426 presented at the SPE Reservoir Simulation Symposium, Houston (2007)

Løvbjerg, M., Krink, T.: Extending particle swarms with self-organized criticality. In: Proc. of the 4th Congress on Evolutionary Computation, pp. 1588–1593 (2002)

Løvbjerg, M., Rasmussen, T., Krink, T.: Hybrid particle swarm optimizer with breeding and subpopulations. In: Proc. of the 3rd Genetic and Evolutionary Computation Conference (GECCO-2001), vol. 1, pp. 469–476 (2001)

Madavan, N.: Aerodynamic shape optimisation using hybrid differential evolution. In: AIAA-2003–3792, 21st AIAA Applied Aerodynamic Conference, Orlando, Florida, USA (2003)

Michalewicz, Z., Schoenauer, M.: Evolutionary algorithms for constrained parameter optimization problems. Evol. Comput. 4(1), 1–32 (1996)

Miranda, V., Fonseca, N.: New evolutionary particle swarm algorithm (EPSO) applied to voltage/VAR control. In: The 14th Power Systems Computation Conference (PSCC’02), Seville, Spain (2002)

Montes, G., Bartolome, P., Udias, A.L.: The use of genetic algorithms in well placement optimization. In: SPE Latin American and Caribbean Petroleum Engineering Conference, SPE 69439 (2001)

Onwunalu, J., Durlofsky, L.J.: Application of a particle swarm optimization algorithm for determining optimum well location and type. Comput. Geosci. 14(1), 183–198 (2010)

Onwunalu, J.: Optimization of nonconventional well placement using genetic algorithms and statistical proxy. Master’s Thesis, Stanford University (2006)

Perez-Guerrero, R.E., Cedeno-Maldonado, J.R.: Economic power dispatch with non-smooth cost functions using differential evolution. In: Proc. the 37th Annual North American Power Symposium 2005, pp. 183–190 (2005)

Plagianakos, V.P., Vrahatis, M.N.: Parallel evolutionary training algorithms for ‘hardware-friendly’ neural networks. Nat. Comput. 1, 307–322 (2002)

Plagianakos, V.P., Vrahatis, M.N.: Training neural networks with threshold activation functions and constrained integer weights. In: IEEE Int. Joint Conf. on Neural Networks (IJCNN 2000), Como, Italy (2000)

Poli, R., Di Chio, C., Langdon, W.B.: Exploring extended particle swarms: a genetic programming approach. In: Beyer, H.-G., et al. (eds.) GECCO 2005: Proceedings of the 2005 Conf. on Genetic and Evolutionary Computation, pp. 169–176. Washington, DC (2005)

Poli, R., Langdon, W.B., Holland, O.: Extending particle swarm optimization via genetic programming. In: Keijzer, M., et al. (eds.) Lecture Notes in Computer Science. Proceedings of the 8th European Conference on Genetic Programming, vol. 3447, pp. 291–300. Springer, Berlin, Lausanne, Switzerland (2005)

Ratnaweera, A., Halgamuge, S.K., Watson, H.C.: Self-organizing hierarchical particle swarm optimizer with time varying accelerating coefficients. IEEE Trans. Evol. Comput. 8(3), 240–255 (2004)

Robinson, J., Sinton, S., Rahmat-Samii, Y.: Particle swarm, genetic algorithm, and their hybrids: optimization of a profiled corrugated horn antenna. In: IEEE International Symposium on Antennas & Propagation, pp. 314–317. San Antonio, Texas (2002)

Rogalsky, T., Derksen, R.W., Kocabiyik, S.: Differential evolution in aerodynamic optimization. Can. Aeronaut. Space Inst. J. 46, 183–190 (2000)

Sarma, P., Chen, W.H.: Efficient well placement optimization with gradient-based algorithms and adjoint models. In: Paper SPE 112257 Presented at the 2008 SPE Intelligent Energy Conf. and Exhib Amsterdam (2008)

Shi, Y., Eberhart, R.C.: A modified particle swarm optimizer. In: Proc. IEEE International Conf. on Evol. Comput., pp. 69–73. IEEE, Piscataway, NJ (1998)

Spall, J.C.: Multivariate stochastic approximation using a simultaneous perturbation gradient approximation. IEEE Trans. Automat. Contr. 37(3), 332–341 (1992)

Storn, R., Price, K.: Differential evolution—a simple and efficient adaptive scheme for global optimization over continuous spaces. Tech. Rep. TR-95–012, Inter. Computer Science Institute (ICSI) (1995)

Storn, R., Price, K.: Differential evolution—simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11, 341–359 (1997)

Sum-Im, T., Taylor, G.A., Irving, M.R., Song, Y.H.: A differential evolution algorithm for multistage transmission expansion planning. In: Proc. the 42nd International Universities Power Engineering Conference (UPEC 2007), pp. 357–364. Brighton, UK (2007)

Tasoulis, D.K., Plagianakos, V.P., Vrahatis, M.N.: Differential evolution algorithms for finding predictive gene subsets in microarray data. In: Artificial Intelligence Applications and Innovations. IFIP Int’l Federation for Information Processing, vol. 204, pp. 484–491 (2006)

Thangaraj, R., Pant, M., Abraham, A., Bouvry, P.: Particle swarm optimization: hybridization perspectives and experimental illustrations. Appl. Math. Comput. 217, 5208–5226 (2011)

Van Essen, G.M., Zandvliet, M.J., Van den Hof, P.M.J., Bosgra, O.H., Jansen, J.D.: Robust waterflooding optimization of multiple geological scenarios. SPE Journal 14(1), 202–210 (2009)

Vasiljevic, D., Golobic, J.: Comparison of the classical dumped least squares and genetic algorithm in the optimization of doublets. In: Proceedings of the First Workshop on Soft Computing, pp. 200–204. Nagoya, Japan (1996)

Wang, C., Li, G., Reynolds, A.C.: Optimal well placement for production optimization. In: Paper SPE 111154 Presented at SPE Eastern Regional Meeting, Lexington (2007)

Wang, J., Buckley, J.S.: Automatic history matching using differential evolution algorithm. In: Int’l Symposium of the Soc. of Core Analysts Trondheim, Norway (2006)

Wang, S.K., Chiou, J.P., Liu, C.W.: Non-smooth/non-convex economic dispatch by a novel hybrid differential evolution algorithm. IEE Proc. Gener. Transm. Distrib. 1(5), 793–803 (2007)

Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1, 67–82 (1997)

Xie, X., Zhang, W., Yang, Z.: A dissipative particle swarm optimization. In: IEEE Congress on Evolutionary Computation, pp. 1456–1461. Honolulu, Hawaii, USA (2002)

Yeten, B.: Optimum deployment of nonconventional wells. Ph.D. thesis, Stanford University (2003)

Zandvliet, M.J., Handels, M., van Essen, G.M., Brouwer, D.R., Jansen, J.D.: Adjoint-based well-placement optimization under production constraints. SPE J. 13(4), 392–399 (2008)

Zhang, W.J., Xie, X.F.: DEPSO: hybrid particle swarm with differential evolution operator. In: IEEE International Conference on Systems, Man and Cybernetics (SMCC), pp. 3816–3821. Washington DC, USA (2003)