Hybrid convolutional neural network (CNN) for Kennedy Space Center hyperspectral image
Tóm tắt
Từ khóa
Tài liệu tham khảo
Pearlman JS, Barry PS, Segal CC et al (2003) Hyperion, a space-based imaging spectrometer. Geosci Remote Sens IEEE Trans 41(6):1160–1173
Cochrane MA (2000) Using vegetation reflectance variability for species level classification of hyperspectral data. Int J Remote Sens 21(10):2075–2087
Pontius J, Martin M, Plourde L et al (2008) Ash decline assessment in emerald ash borer-infested regions: a test of tree-level, hyperspectral technologies. Remote Sens Environ 112(5):2665–2676
Cloutis EA (1996) Review article hyperspectral geological remote sensing: evaluation of analytical techniques. Int J Remote Sens 17(12):2215–2242
Bulcock HH, Jewitt GPW (2010) Spatial mapping of leaf area index using hyperspectral remote sensing for hydrological applications with a particular focus on canopy interception. Hydrol Earth Syst Sci 14(2):383–392
Erives H, Fitzgerald GJ (2005) Automated registration of hyperspectral images for precision agriculture. Comput Electron Agric 47(2):103–119
Lanthier Y, Bannari A, Haboudane D, et al (2009) Hyperspectral data segmentation and classification in precision agriculture: a multi-scale analysis. Geoscience and Remote Sensing Symposium, 2008. IGARSS 2008. IEEE International. IEEE, II-585–II-588.
Mei S, Yuan X, Ji J, Zhang Y, Wan S, Du Q (2017) Hyperspectral image spatial super-resolution via 3d full convolutional neural network. Remote Sens 9:1139
Camps-Valls G, Tuia D, Bruzzone L, Benediktsson JA (2014) Advances in hyperspectral image classification: Earth monitoring with statistical learning methods. IEEE Signal Process Mag 31(1):45–54
Li J, Huang X, Gamba P, Bioucas-Dias JM, Zhang L, Benediktsson JA, Plaza A (2015) Multiple feature learning for hyperspectral image classification. IEEE Trans Geosci Remote Sens 53(3):1592–1606
Chen Y, Zhao X, Jia X (2015) Spectral–spatial classification of hyperspectral data based on deep belief network. IEEE J Sel Topics Appl Earth Observ Remote Sens. 8(6):2381–2392
Pandey BK, Mane D, Nassa VKK, Pandey D, Dutta S, Ventayen RJM, Rastogi R (2021) Secure text extraction from complex degraded images by applying steganography and deep learning. In: Multidisciplinary approach to modern digital steganography. IGI Global, pp 146-163
Hu W, Huang Y, Wei L, Zhang F, Li H (2015) Deep convolutional neural networks for hyperspectral image classification. J. Sensors 2015:258619
Yue J, Mao S, Li M (2016) A deep learning framework for hyperspectral image classification using spatial pyramid pooling. Remote Sens Lett 7(9):875–884
Cao X, Zhou F, Xu L, Meng D, Xu Z, Paisley J (2018) Hyperspectral image classification with Markov random fields and a convolutional neural network. IEEE Trans Image Process 27(5):2354–2367
Hamida AB, Benoit A, Lambert P, Amar CB (2018) 3-D deep learning approach for remote sensing image classification. IEEE Trans Geosci Remote Sens 56(8):4420–4434
Lee H, Kwon H (2017) Going deeper with contextual CNN for hyperspectral image classification. IEEE Trans Image Process 26(10):4843–4855
Lin Z, Chen Y, Zhao X, Wang G (2013) Spectral–spatial classification of hyperspectral image using autoencoders. In Proceedings of the IEEE 9th International Conference on Information, Communication Signal Process. (ICICS), pp. 1–5
Midhun M, Nair SR, Prabhakar V, Kumar SS (2014) Deep model for classification of hyperspectral image using restricted Boltzmann machine. In Proceedings of ACM International Conference Interdiscipl. Adv. Appl. Comput, Art. no. 35
Li J (2015) Active learning for hyperspectral image classification with a stacked autoencoders based neural network. In Proceedings of the 7th Workshop Hyperspectral Image Signal Process, Evol. Remote Sens. (WHISPERS), pp. 1–4
Liu P, Zhang H, Eom KB (2017) Active deep learning for classification of hyperspectral images. IEEE J Sel Topics Appl Earth Observ Remote Sens. 10(2):712–724
Haut JM, Paoletti ME, Plaza J, Li J, Plaza A (2018) Active learning with convolutional neural networks for hyperspectral image classification using a new Bayesian approach. IEEE Trans Geosci Remote Sens 56(11):6440–6461
Li W, Wu G, Zhang F, Du Q (2017) Hyperspectral image classification using deep pixel-pair features. IEEE Trans Geosci Remote Sens 55(2):844–853
Li J, Bioucas-Dias JM, Plaza A (2010) Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning. IEEE Trans Geosci Remote Sens 48(11):4085–4098
Li J, Bioucas-Dias JM, Plaza A (2011) Hyperspectral image segmentation using a new Bayesian approach with active learning. IEEE Trans Geosci Remote Sens 49(10):3947–3960
Bengio Y, Lamblin P, Popovici D, Larochelle H (2007) Greedy layer-wise training of deep networks. Adv NIPS 19:153–160
Shanthi T, Anand R, Annapoorani S, Birundha N (2023) Analysis of Phonocardiogram Signal Using Deep Learning. In: Gupta D, Khanna A, Bhattacharyya S, Hassanien AE, Anand S, Jaiswal A (eds) International conference on innovative computing and communications, vol 471. Lecture Notes in Networks and Systems. Springer, Singapore
Kandasamy SK, Maheswaran S, Karuppusamy SA, Indra J, Anand R, Rega P, Kathiresan K (2022) Design and Fabrication of Flexible Nanoantenna-Based Sensor Using Graphene-Coated Carbon Cloth. Adv Mater Sci Eng
Pandey BK, Pandey D, Wariya S, Agarwal G (2021) A deep neural network-based approach for extracting textual images from deteriorate images. EAI Endorsed Trans Ind Netw Intell Syst 8(28):e3–e3