Hybrid concentrated radiative cooling and solar heating in a single system

Cell Reports Physical Science - Tập 2 - Trang 100338 - 2021
Lyu Zhou1, Haomin Song1, Nan Zhang1, Jacob Rada1, Matthew Singer1, Huafan Zhang2, Boon S. Ooi2, Zongfu Yu3, Qiaoqiang Gan1
1Department of Electrical Engineering, The State University of New York at Buffalo, Buffalo, NY, 14260, USA
2KAUST Nanophotonics Lab, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
3Department of Electrical and Computer Engineering, University of Wisconsin, Madison, WI 53705, USA

Tài liệu tham khảo

Mat, 2016, Cooling the buildings – past, present and future, Energy Build., 128, 617, 10.1016/j.enbuild.2016.07.034 2016, Transportation sector energy consumption, 127 Chu, 2012, Opportunities and challenges for a sustainable energy future, Nature, 488, 294, 10.1038/nature11475 Raman, 2014, Passive radiative cooling below ambient air temperature under direct sunlight, Nature, 515, 540, 10.1038/nature13883 Shi, 2015, Thermal physiology. Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants, Science, 349, 298, 10.1126/science.aab3564 Zhou, 2018, Accelerating vapor condensation with daytime radiative cooling, arXiv Zhai, 2017, Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling, Science, 355, 1062, 10.1126/science.aai7899 Hsu, 2016, Radiative human body cooling by nanoporous polyethylene textile, Science, 353, 1019, 10.1126/science.aaf5471 Hsu, 2017, A dual-mode textile for human body radiative heating and cooling, Sci. Adv., 3, e1700895, 10.1126/sciadv.1700895 Mandal, 2018, Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling, Science, 362, 315, 10.1126/science.aat9513 Li, 2019, A radiative cooling structural material, Science, 364, 760, 10.1126/science.aau9101 Peng, 2018, Nanoporous polyethylene microfibres for large-scale radiative cooling fabric, Nat. Sustain., 1, 105, 10.1038/s41893-018-0023-2 Zhang, 2019, Dynamic gating of infrared radiation in a textile, Science, 363, 619, 10.1126/science.aau1217 Zhou, 2019, A polydimethylsiloxane-coated metal structure for all-day radiative cooling, Nat. Sustain., 2, 718, 10.1038/s41893-019-0348-5 Bhatia, 2018, Passive directional sub-ambient daytime radiative cooling, Nat. Commun., 9, 5001, 10.1038/s41467-018-07293-9 Leroy, 2019, High-performance subambient radiative cooling enabled by optically selective and thermally insulating polyethylene aerogel, Sci. Adv., 5, eaat9480, 10.1126/sciadv.aat9480 Hossain, 2016, Radiative Cooling: Principles, progress, and potentials, Adv. Sci. (Weinh.), 3, 1500360 Fan, 2017, Thermal photonics and energy applications, Joule, 1, 264, 10.1016/j.joule.2017.07.012 Sun, 2017, Radiative sky cooling: fundamental physics, materials, structures, and applications, Nanophotonics, 6, 997, 10.1515/nanoph-2017-0020 Zhao, 2019, Radiative cooling: A review of fundamentals, materials, applications, and prospects, Appl. Energy, 236, 489, 10.1016/j.apenergy.2018.12.018 Kou, 2017, Daytime radiative cooling using near-black infrared emitters, ACS Photonics, 4, 626, 10.1021/acsphotonics.6b00991 Zhu, 2020, Plasmon-enhanced infrared emission approaching the theoretical limit of radiative cooling ability, Nano Lett., 20, 6974, 10.1021/acs.nanolett.0c01457 Chen, 2019, Simultaneously and synergistically harvest energy from the sun and outer space, Joule, 3, 101, 10.1016/j.joule.2018.10.009 Granqvist, 1980, Surfaces for radiative cooling: silicon monoxide films on aluminum, Appl. Phys. Lett., 36, 139, 10.1063/1.91406 Granqvist, 1981, Radiative heating and cooling with spectrally selective surfaces, Appl. Opt., 20, 2606, 10.1364/AO.20.002606 Granqvist, 1982, Radiative cooling to low temperatures with selectivity IR-emitting surfaces, Thin Solid Films, 90, 187, 10.1016/0040-6090(82)90648-4 Catalanotti, 1975, The radiative cooling of selective surfaces, Sol. Energy, 17, 83, 10.1016/0038-092X(75)90062-6 Head, 1962 Trombe, 1967, Perspectives sur l’utilisation des rayonnements solaires et terrestres dans certaines re’gions du monde, Revue Générale Thermique, 6, 1285 Chen, 2016, Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle, Nat. Commun., 7, 13729, 10.1038/ncomms13729 Li, 2018, Photonic thermal management of coloured objects, Nat. Commun., 9, 4240, 10.1038/s41467-018-06535-0 Gentle, 2015, A Subambient open roof surface under the mid-summer sun, Adv. Sci. (Weinh.), 2, 1500119 Atiganyanun, 2018, Effective radiative cooling by paint-format microsphere-based photonic random media, ACS Photonics, 5, 1181, 10.1021/acsphotonics.7b01492 Rephaeli, 2013, Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling, Nano Lett., 13, 1457, 10.1021/nl4004283 Goldstein, 2017, Sub-ambient non-evaporative fluid cooling with the sky, Nat. Energy, 2, 17143, 10.1038/nenergy.2017.143 Smith, 2009, Amplified radiative cooling via optimised combinations of aperture geometry and spectral emittance profiles of surfaces and the atmosphere, Sol. Energy Mater. Sol. Cells, 93, 1696, 10.1016/j.solmat.2009.05.015 Tso, 2017, A field investigation of passive radiative cooling under Hong Kong’s climate, Renew. Energy, 106, 52, 10.1016/j.renene.2017.01.018 Raman, 2019, Generating light from darkness, Joule, 3, 2679, 10.1016/j.joule.2019.08.009 Cao, 2014, A review of cermet-based spectrally selective solar absorbers, Energy Environ. Sci., 7, 1615, 10.1039/c3ee43825b Granqvist, 1978, Optical properties of Ag-SiO2 Cermet films: A comparison of effective-medium theories, Phys. Rev. B Condens. Matter, 18, 2897, 10.1103/PhysRevB.18.2897 Biener, 2008, Nanoporous Plasmonic Metamaterials, Adv. Mater., 20, 1211, 10.1002/adma.200701899 Zhang, 2014, Refractive index engineering of metal-dielectric nanocomposite thin films for optical super absorber, Appl. Phys. Lett., 104, 203112, 10.1063/1.4879829 Song, 2014, Nanocavity enhancement for ultra-thin film optical absorber, Adv. Mater., 26, 2737, 10.1002/adma.201305793 Liu, 2014, A large-scale lithography-free metasurface with spectrally tunable super absorption, Nanoscale, 6, 5599, 10.1039/c4nr00747f Kennedy, 2002 Wang, 2011, Optical property and thermal stability of Mo/Mo–SiO2/SiO2 solar-selective coating prepared by magnetron sputtering, Phys. Status Solidi, 208, 664, 10.1002/pssa.201026301 Li, 2019, On the effective spectral emissivity of clear skies and the radiative cooling potential of selectively designed materials, Int. J. Heat Mass Transf., 135, 1053, 10.1016/j.ijheatmasstransfer.2019.02.040 Byrnes, 2014, Harvesting renewable energy from Earth’s mid-infrared emissions, Proc. Natl. Acad. Sci. USA, 111, 3927, 10.1073/pnas.1402036111 Buddhiraju, 2018, Thermodynamic limits of energy harvesting from outgoing thermal radiation, Proc. Natl. Acad. Sci. USA, 115, E3609, 10.1073/pnas.1717595115 Zhu, 2015, Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody, Proc. Natl. Acad. Sci. USA, 112, 12282, 10.1073/pnas.1509453112 Reyna, 2017, Energy efficiency to reduce residential electricity and natural gas use under climate change, Nat. Commun., 8, 14916, 10.1038/ncomms14916 Laine, 2019, Meeting global cooling demand with photovoltaics during the 21st century, Energy Environ. Sci., 12, 2706, 10.1039/C9EE00002J She, 2018, Energy-efficient and -economic technologies for air conditioning with vapor compression refrigeration: A comprehensive review, Appl. Energy, 232, 157, 10.1016/j.apenergy.2018.09.067 Li, 2019, Radiative cooling resource maps for the contiguous United States, J. Renew. Sustain. Energy, 11, 036501, 10.1063/1.5094510 Li, 2020, Thermodynamic limits for simultaneous energy harvesting from the hot sun and cold outer space, Light Sci. Appl., 9, 68, 10.1038/s41377-020-0296-x