Hybrid concentrated radiative cooling and solar heating in a single system
Tài liệu tham khảo
Mat, 2016, Cooling the buildings – past, present and future, Energy Build., 128, 617, 10.1016/j.enbuild.2016.07.034
2016, Transportation sector energy consumption, 127
Chu, 2012, Opportunities and challenges for a sustainable energy future, Nature, 488, 294, 10.1038/nature11475
Raman, 2014, Passive radiative cooling below ambient air temperature under direct sunlight, Nature, 515, 540, 10.1038/nature13883
Shi, 2015, Thermal physiology. Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants, Science, 349, 298, 10.1126/science.aab3564
Zhou, 2018, Accelerating vapor condensation with daytime radiative cooling, arXiv
Zhai, 2017, Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling, Science, 355, 1062, 10.1126/science.aai7899
Hsu, 2016, Radiative human body cooling by nanoporous polyethylene textile, Science, 353, 1019, 10.1126/science.aaf5471
Hsu, 2017, A dual-mode textile for human body radiative heating and cooling, Sci. Adv., 3, e1700895, 10.1126/sciadv.1700895
Mandal, 2018, Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling, Science, 362, 315, 10.1126/science.aat9513
Li, 2019, A radiative cooling structural material, Science, 364, 760, 10.1126/science.aau9101
Peng, 2018, Nanoporous polyethylene microfibres for large-scale radiative cooling fabric, Nat. Sustain., 1, 105, 10.1038/s41893-018-0023-2
Zhang, 2019, Dynamic gating of infrared radiation in a textile, Science, 363, 619, 10.1126/science.aau1217
Zhou, 2019, A polydimethylsiloxane-coated metal structure for all-day radiative cooling, Nat. Sustain., 2, 718, 10.1038/s41893-019-0348-5
Bhatia, 2018, Passive directional sub-ambient daytime radiative cooling, Nat. Commun., 9, 5001, 10.1038/s41467-018-07293-9
Leroy, 2019, High-performance subambient radiative cooling enabled by optically selective and thermally insulating polyethylene aerogel, Sci. Adv., 5, eaat9480, 10.1126/sciadv.aat9480
Hossain, 2016, Radiative Cooling: Principles, progress, and potentials, Adv. Sci. (Weinh.), 3, 1500360
Fan, 2017, Thermal photonics and energy applications, Joule, 1, 264, 10.1016/j.joule.2017.07.012
Sun, 2017, Radiative sky cooling: fundamental physics, materials, structures, and applications, Nanophotonics, 6, 997, 10.1515/nanoph-2017-0020
Zhao, 2019, Radiative cooling: A review of fundamentals, materials, applications, and prospects, Appl. Energy, 236, 489, 10.1016/j.apenergy.2018.12.018
Kou, 2017, Daytime radiative cooling using near-black infrared emitters, ACS Photonics, 4, 626, 10.1021/acsphotonics.6b00991
Zhu, 2020, Plasmon-enhanced infrared emission approaching the theoretical limit of radiative cooling ability, Nano Lett., 20, 6974, 10.1021/acs.nanolett.0c01457
Chen, 2019, Simultaneously and synergistically harvest energy from the sun and outer space, Joule, 3, 101, 10.1016/j.joule.2018.10.009
Granqvist, 1980, Surfaces for radiative cooling: silicon monoxide films on aluminum, Appl. Phys. Lett., 36, 139, 10.1063/1.91406
Granqvist, 1981, Radiative heating and cooling with spectrally selective surfaces, Appl. Opt., 20, 2606, 10.1364/AO.20.002606
Granqvist, 1982, Radiative cooling to low temperatures with selectivity IR-emitting surfaces, Thin Solid Films, 90, 187, 10.1016/0040-6090(82)90648-4
Catalanotti, 1975, The radiative cooling of selective surfaces, Sol. Energy, 17, 83, 10.1016/0038-092X(75)90062-6
Head, 1962
Trombe, 1967, Perspectives sur l’utilisation des rayonnements solaires et terrestres dans certaines re’gions du monde, Revue Générale Thermique, 6, 1285
Chen, 2016, Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle, Nat. Commun., 7, 13729, 10.1038/ncomms13729
Li, 2018, Photonic thermal management of coloured objects, Nat. Commun., 9, 4240, 10.1038/s41467-018-06535-0
Gentle, 2015, A Subambient open roof surface under the mid-summer sun, Adv. Sci. (Weinh.), 2, 1500119
Atiganyanun, 2018, Effective radiative cooling by paint-format microsphere-based photonic random media, ACS Photonics, 5, 1181, 10.1021/acsphotonics.7b01492
Rephaeli, 2013, Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling, Nano Lett., 13, 1457, 10.1021/nl4004283
Goldstein, 2017, Sub-ambient non-evaporative fluid cooling with the sky, Nat. Energy, 2, 17143, 10.1038/nenergy.2017.143
Smith, 2009, Amplified radiative cooling via optimised combinations of aperture geometry and spectral emittance profiles of surfaces and the atmosphere, Sol. Energy Mater. Sol. Cells, 93, 1696, 10.1016/j.solmat.2009.05.015
Tso, 2017, A field investigation of passive radiative cooling under Hong Kong’s climate, Renew. Energy, 106, 52, 10.1016/j.renene.2017.01.018
Raman, 2019, Generating light from darkness, Joule, 3, 2679, 10.1016/j.joule.2019.08.009
Cao, 2014, A review of cermet-based spectrally selective solar absorbers, Energy Environ. Sci., 7, 1615, 10.1039/c3ee43825b
Granqvist, 1978, Optical properties of Ag-SiO2 Cermet films: A comparison of effective-medium theories, Phys. Rev. B Condens. Matter, 18, 2897, 10.1103/PhysRevB.18.2897
Biener, 2008, Nanoporous Plasmonic Metamaterials, Adv. Mater., 20, 1211, 10.1002/adma.200701899
Zhang, 2014, Refractive index engineering of metal-dielectric nanocomposite thin films for optical super absorber, Appl. Phys. Lett., 104, 203112, 10.1063/1.4879829
Song, 2014, Nanocavity enhancement for ultra-thin film optical absorber, Adv. Mater., 26, 2737, 10.1002/adma.201305793
Liu, 2014, A large-scale lithography-free metasurface with spectrally tunable super absorption, Nanoscale, 6, 5599, 10.1039/c4nr00747f
Kennedy, 2002
Wang, 2011, Optical property and thermal stability of Mo/Mo–SiO2/SiO2 solar-selective coating prepared by magnetron sputtering, Phys. Status Solidi, 208, 664, 10.1002/pssa.201026301
Li, 2019, On the effective spectral emissivity of clear skies and the radiative cooling potential of selectively designed materials, Int. J. Heat Mass Transf., 135, 1053, 10.1016/j.ijheatmasstransfer.2019.02.040
Byrnes, 2014, Harvesting renewable energy from Earth’s mid-infrared emissions, Proc. Natl. Acad. Sci. USA, 111, 3927, 10.1073/pnas.1402036111
Buddhiraju, 2018, Thermodynamic limits of energy harvesting from outgoing thermal radiation, Proc. Natl. Acad. Sci. USA, 115, E3609, 10.1073/pnas.1717595115
Zhu, 2015, Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody, Proc. Natl. Acad. Sci. USA, 112, 12282, 10.1073/pnas.1509453112
Reyna, 2017, Energy efficiency to reduce residential electricity and natural gas use under climate change, Nat. Commun., 8, 14916, 10.1038/ncomms14916
Laine, 2019, Meeting global cooling demand with photovoltaics during the 21st century, Energy Environ. Sci., 12, 2706, 10.1039/C9EE00002J
She, 2018, Energy-efficient and -economic technologies for air conditioning with vapor compression refrigeration: A comprehensive review, Appl. Energy, 232, 157, 10.1016/j.apenergy.2018.09.067
Li, 2019, Radiative cooling resource maps for the contiguous United States, J. Renew. Sustain. Energy, 11, 036501, 10.1063/1.5094510
Li, 2020, Thermodynamic limits for simultaneous energy harvesting from the hot sun and cold outer space, Light Sci. Appl., 9, 68, 10.1038/s41377-020-0296-x