Hybrid-augmented intelligence: collaboration and cognition
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ando, R.K., 2007. Biocreative II gene mention tagging system at IBM Watson. Proc. 2nd BioCreative Challenge Evaluation Workshop, p.101–103.
Ando, R.K., Dredze, M., Zhang, T., 2005. Trec 2005 genomics track experiments at IBM Watson. 14th Text REtrieval Conf., p.1–10.
Atif, Y., Mathew, S.S., 2015. Building a smart campus to support ubiquitous learning. J. Amb. Intell. Human. Comput., 6(2):1–16. http://dx.doi.org/10.1007/s12652-014-0226-y
Ball, M.O., Chen, C.Y., Hoffman, R., et al., 2001. Collaborative decision making in air traffic management: current and future research directions. In: Bianco, L., Dell’Olmo, P., Odoni, A.R. (Eds.), New Concepts and Methods in Air Traffic Management. Springer Berlin Heidelberg, Berlin, Germany, p.17–30. http://dx.doi.org/10.1007/978-3-662-04632-6
Barnes, M.J., Chen, J.Y.C., Jentsch, F., et al., 2013. An overview of humans and autonomy for military environments: safety, types of autonomy, agents, and user interfaces. Proc. 10th Int. Conf. on Engineering Psychology and Cognitive Ergonomics: Applications and Services, p.243–252. https://dx.doi.org/10.1007/978-3-642-39354-9_27
Boman, I.L., Bartfai, A., 2015. The first step in using a robot in brain injury rehabilitation: patients’ and health-care professionals’ perspective. Disab. Rehab. Assist. Technol., 10(5):365–370. http://dx.doi.org/10.3109/17483107.2014.913712
Bradley, A.P., 1997. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Patt. Recogn., 30(7):1145–1159. http://dx.doi.org/10.1016/S0031-3203(96)00142-2
Browne, C.B., Powley, E., Whitehouse, D., et al., 2012. A survey of Monte Carlo tree search methods. IEEE Trans. Comput. Intell. AI Games, 4(1):1–43. http://dx.doi.org/10.1109/TCIAIG.2012.2186810
Campbell, M., Hoane, A.J., Hsu, F.H., 2002. Deep Blue. Artif. Intell., 134(1-2):57–83. http://dx.doi.org/10.1016/S0004-3702(01)00129-1
Chen, D., Yuan, Z., Hua, G., et al., 2016. Multi-timescale collaborative tracking. IEEE Trans. Patt. Anal. Mach. Intell., 39(1):141–155. http://dx.doi.org/10.1109/TPAMI.2016.2539956
Chen, Y., Argentinis, J.D.E., Weber, G., 2016. IBM Watson: how cognitive computing can be applied to big data challenges in life sciences research. Clin. Therap., 38(4):688–701. http://dx.doi.org/10.1016/j.clinthera.2015.12.001
Cimbala, S.J., 2012. Artificial Intelligence and National Security. Lexington Books, Lanham, USA.
Denton, E.L., Chintala, S., Fergus, R., et al., 2015. Deep generative image models using a Laplacian pyramid of adversarial networks. Proc. 28th Int. Conf. on Neural Information Processing Systems, p.1486–1494.
de Rocquigny, E., Nicolas, D., Stefano, T., 2008. Uncertainty in Industrial Practice: a Guide to Quantitative Uncertainty Management. John Wiley & Sons, Hoboken, USA.
Dias, M.G., Harris, P., 1988. The effect of make-believe play on deductive reasoning. Br. J. Devel. Psychol., 6(3):207–221. http://dx.doi.org/10.1111/j.2044-835X.1988.tb01095.x
Dounias, G., 2003. Hybrid computational intelligence in medicine. Proc. Workshop on Intelligent and Adaptive Systems in Medicine.
Eakin, H., Luers, A.L., 2006. Assessing the vulnerability of social-environmental systems. Ann. Rev. Environ. Resourc., 31:1–477. http://dx.doi.org/10.1146/annurev.energy.30.050504.144352
Ferreira, F.J., Crispim, V.R., Silva, A.X., 2010. Detection of drugs and explosives using neutron computerized tomography and artificial intelligence techniques. Appl. Rad. Isot., 68(6):1012–1017. http://dx.doi.org/10.1016/j.apradiso.2010.01.019
Fire, A., Zhu, S.C., 2016. Learning perceptual causality from video. ACM Trans. Intell. Syst. Technol., 7(2):1–22. http://dx.doi.org/10.1145/2809782
Fischbein, H., 2002. Intuition in Science and Mathematics: an Educational Approach. Springer Science & Business Media, Berlin, Germany.
Fjellheim, R., Bratvold, R.R., Herbert, M.C., 2008. CODIO -collaborative decisionmaking in integrated operations. Intelligent Energy Conf. and Exhibition, p.1–7. http://dx.doi.org/10.2118/111876-MS
Fogel, D.B., 1995. Evolutionary Computation: Toward a New Philosophy of Machine Intelligence. Wiley-IEEE Press.
Freyd, J.J., 1983. Representing the dynamics of a static form. Memory Cogn., 11(4):342–346. http://dx.doi.org/10.3758/BF03202447
Funahashi, K.I., Nakamura, Y., 1993. Approximation of dynamic systems by continuous-time recurrent neural networks. Neur. Netw., 6(6):801–806. http://dx.doi.org/10.1016/S0893-6080(05)80125-X
Gil, Y., Greaves, M., Hendler, J., et al., 2014. Amplify scientific discovery with artificial intelligence. Science, 346(6206):171–172. http://dx.doi.org/10.1126/science.1259439
Gilbert, G.R., Beebe, M.K., 2010. United States Department of Defense Research in Robotic Unmanned Systems for Combat Casualty Care. Report No. RTO-MP-HFM-182, Fort Detrick, Frederick, USA.
Goodfellow, I.J., Shlens, J., Szegedy, C., 2014a. Explaining and harnessing adversarial examples. ePrint Archive, arXiv:1412.6572.
Goodfellow, I.J., Pougetabadie, J., Mirza, M., et al., 2014b. Generative adversarial nets. Advances in Neural Information Processing Systems, p.2672–2680.
Graves, A., Mohamed, A.R., Hinton, G., 2013. Speech recognition with deep recurrent neural networks. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, p.6645–6649. http://dx.doi.org/10.1109/ICASSP.2013.6638947
Graves, A., Wayne, G., Danihelka, I., 2014. Neural turing machines. ePrint Archive, arXiv:1410.5401.
Graves, A., Wayne, G., Reynolds, M., et al., 2016. Hybrid computing using a neural network with dynamic external memory. Nature, 538(7626):471–476. http://dx.doi.org/10.1038/nature20101
Griffiths, T.L., Chater, N., Kemp, C., et al., 2010. Probabilistic models of cognition: exploring representations and inductive biases. Trends Cogn. Sci., 14(8):357–364. http://dx.doi.org/10.1016/j.tics.2010.05.004
Guilford, J.P., 1967. The Nature of Human Intelligence. McGraw-Hill, New York, USA.
Hagan, M.T., Demuth, H.B., Beale, M.H., et al., 2002. Neural Network Design. PWS Publishing Co., Boston, USA.
Hilovska, K., Koncz, P., 2012. Application of artificial intelligence and data mining techniques to financial markets. ACTA VSFS, 6:62–76.
Hiskens, I.A., Davy, R.J., 2001. Exploring the power flow solution space boundary. IEEE Trans. Power Syst., 16(3):389–395. http://dx.doi.org/10.1109/59.932273
Hoffman, R., 1998. Integer Programming Models for Ground-Holding in Air Traffic Flow Management. PhD Thesis, University of Maryland, College Park, USA.
Holland, J.H., 1992. Adaptation in Natural and Artificial Systems: an Introductory Analysis with Applications to Biology, Control and Artificial Intelligence. MIT Press.
Honey, C.J., Thivierge, J.P., Sporns, O., 2010. Can structure predict function in the human brain? NeuroImage, 52(3):766–776. http://dx.doi.org/10.1016/j.neuroimage.2010.01.071
Hu, P., Zhou, S., Ding, W.Z., et al., 2010. The comprehensive measurement model of the member importance in social networks. Int. Conf. on Management and Service Science, p.1–4. http://dx.doi.org/10.1109/ICMSS.2010.5577405
Hu, P., Wen, C.L., Pan, D., 2013. The mutual relationship among external network, internal resource, and competitiveness of enterprises. Sci. Res. Manag., V(4):90–98 (in Chinese).
Hughes, D., Camp, C., O’Hara, J., et al., 2016. Health resource use following robot-assisted surgery versus open and conventional laparoscopic techniques in oncology: analysis of English secondary care data for radical prostatectomy and partial nephrectomy. BJU Int., 117(6):940–947.
Im, D.Y., Ryoo, Y.J., Kim, D.Y., et al., 2009. Unmanned driving of intelligent robotic vehicle. ISIS Proc. 10th Symp. on Advanced Intelligent Systems, p.213–216.
Ioffe, A.D., 1979. Necessary and sufficient conditions for a local minimum. 3: second order conditions and augmented duality. SIAM J. Contr. Opt., 17(2):266–288. http://dx.doi.org/10.1137/0317021
Janis, I.L., Mann, L., 1977. Decision Making: a Psychological Analysis of Conflict, Choice, and Commitment. Free Press, New York, USA.
Jennings, N.R., 2000. On agent-based software engineering artificial intelligence. Artif. Intell., 117(2):277–296.
Johnson, M., Bradshaw, J.M., Feltovich, P.J., et al., 2014. Coactive design: designing support for interdependence in joint activity. Electr. Eng. Math. Comput. Sci., 3(1):43–49. http://dx.doi.org/10.5898/JHRI.3.1
Johnson Johnson, S., Slaughter, V., Carey, S., 1998. Whose gaze will infants follow? The elicitation of gaze-following in 12-month-olds. Devel. Sci., 1(2):233–238. http://dx.doi.org/10.1111/1467-7687.00036
Jordan, M.I., 2016. On computational thinking, inferential thinking and data science. Proc. 28th ACM Symp. on Parallelism in Algorithms and Architectures, p.47. http://dx.doi.org/10.1145/2935764.2935826
Kourtzi, Z., Kanwisher, N., 2000. Activation in human MT/MST by static images with implied motion. J. Cogn. Neurosci., 12(1):48–55. http://dx.doi.org/10.1162/08989290051137594
Lake, B.M., Salakhutdinov, R., Tenenbaum, J.B., 2015. Human-level concept learning through probabilistic program induction. Science, 350(6266):1332–1338. http://dx.doi.org/10.1126/science.aab3050
Lake, B.M., Ullman, T.D., Tenenbaum, J.B., et al., 2016. Building machines that learn and think like people. Behav. Brain Sci., 22:1–101.
Ledford, H., 2015. How to solve the world’s biggest problems. Nature, 525:308–311. http://dx.doi.org/10.1038/525308a
Lewis, D.D., 1998. Naive (Bayes) at forty: the independence assumption in information retrieval. European Conf. on Machine Learning, p.4–15. http://dx.doi.org/10.1007/BFb0026666
Lillicrap, T.P., Hunt, J.J., Pritzel, A., et al., 2016. Continuous control with deep reinforcement learning. ePrint Archive, arXiv:1509.02971.
Lippmann, R.P., 1987. An introduction to computing with neural nets. IEEE ASSP Mag., 4(2):4–22. http://dx.doi.org/10.1109/MASSP.1987.1165576
Liyanage, J.P., 2012. Hybrid Intelligence Through Business Socialization and Networking: Managing Complexities in the Digital Era. IGI Global, Hershey, USA.
Marchiori, D., Warglien, M., 2008. Predicting human interactive learning by regret-driven neural networks. Science, 319(5866):1111–1113. http://dx.doi.org/10.1126/science.1151185
Marr, D., 1977. Artificial intelligence—a personal view. Artif. Intell., 9(1):37–48. http://dx.doi.org/10.1016/0004-3702(77)90013-3
Martin, J., 2007. The Meaning of the 21st Century: a Vital Blueprint for Ensuring Our Future. Random House.
McCarthy, J., Hayes, P.J., 1987. Some Philosophical Problems from the Standpoint of Artificial Intelligence. Morgan Kaufmann Publishers Inc., Burlington, USA.
Michalski, R.S., Carbonell, J.G., Mitchell, T.M., 1984. Machine Learning: an Artificial Intelligence Approach. Springer Science & Business Media, Berlin, Germany.
Mikolov, T., Karafiát, M., Burget, L., et al., 2010. Recurrent neural network based language model. Conf. of the Int. Speech Communication Association, p.1045–1048.
Minsky, M., 1961. Steps toward artificial intelligence. Proc. IRE, 49(1):8–30. http://dx.doi.org/10.1109/JRPROC.1961.287775
Mirza, M., Osindero, S., 2014. Conditional generative adversarial nets. ePrint Archive, arXiv:1411.1784.
Mizumoto, M., 1982. Comparison of fuzzy reasoning methods. Fuzzy Sets Syst., 8(3):253–283. http://dx.doi.org/10.1016/S0165-0114(82)80004-3
Mnih, V., Kavukcuoglu, K., Silver, D., et al., 2013. Playing Atari with deep reinforcement learning. ePrint Archive, arXiv:1312.5602.
Mnih, V., Kavukcuoglu, K., Silver, D., et al., 2015. Humanlevel control through deep reinforcement learning. Nature, 518(7540):529–533. http://dx.doi.org/10.1038/nature14236
Moran, J., Desimone, R., 1985. Selective Attention Gates Visual Processing in the Extrastriate Cortex. MIT Press, Cambridge, USA.
Muir, B.M., 1994. Trust in automation: part I. Theoretical issues in the study of trust and human intervention in automated systems. Ergonomics, 37(11):1905–1922. http://dx.doi.org/10.1080/00140139408964957
Nash, J.F., 1950. Equilibrium points in n-person games. PNAS, 36(1):48–49. http://dx.doi.org/10.1073/pnas.36.1.48
Navigli, R., Ponzetto, S.P., 2012. Babelnet: the automatic construction, evaluation and application of a wide-coverage multilingual semantic network. Artif. Intell., 193(6):217–250. http://dx.doi.org/10.1016/j.artint.2012.07.001
Newell, A., Simon, H.A., 1972. Human Problem Solving. Prentice-Hall, Englewood Cliffs, USA.
Nilsson, N.J., 1965. Learning Machines: Foundations of Trainable Pattern-Classifying Systems. McGraw-Hill, New York, USA.
Nissen, M.J., Bullemer, P., 1987. Attentional requirements of learning: evidence from performance measures. Cogn. Psychol., 19(1):1–32. http://dx.doi.org/10.1016/0010-0285(87)90002-8
Noh, H., Hong, S., Han, B., 2015. Learning deconvolution network for semantic segmentation. IEEE Int. Conf. on Computer Vision, p.1520–1528.
Norman, K.A., O’Reilly, R.C., 2003. Modeling hippocampal and neocortical contributions to recognition memory: a complementary-learning-systems approach. Psychol. Rev., 110(4):611–646. http://dx.doi.org/10.1037/0033-295X.110.4.611
Ogura, T., Yamada, J., Yamada, S.I., et al., 1989. A 20 kbit associative memory lSI for artificial intelligence machines. IEEE J. Sol.-State Circ., 24(4):1014–1020. http://dx.doi.org/10.1109/4.34086
O’Keefe, J., Nadel, L., 1978. The Hippocampus as a Cognitive Map. Clarendon Press, Oxford.
O’Leary, D.E., 2013. Artificial intelligence and big data. IEEE Intell. Syst., 28(2):96–99. http://dx.doi.org/10.1109/MIS.2013.39
Pan, Y.H., 2016. Heading toward artificial intelligence 2.0. Engineering, 2(4):409–413. http://dx.doi.org/10.1016/J.ENG.2016.04.018
Park, C.C., Kim, G., 2015. Expressing an image stream with a sequence of natural sentences. Advances in Neural Information Processing Systems, p.73–81.
Poole, D., Mackworth, A., Goebel, R., 1997. Computational Intelligence: a Logical Approach. Oxford University Press, Oxford, UK.
Premack, D., Premack, A.J., 1997. Infants attribute value to the goal-directed actions of self-propelled objects. J. Cogn. Neurosci., 9(6):848–856. http://dx.doi.org/10.1162/jocn.1997.9.6.848
Pylyshyn, Z.W., 1984. Computation and Cognition: Toward a Foundation for Cognitive Science. The MIT Press, Cambridge, Massachusetts, USA.
Radford, A., Metz, L., Chintala, S., 2015. Unsupervised representation learning with deep convolutional generative adversarial networks. ePrint Archive, arXiv:1511.06434.
Rashevsky, N., 1964. Man-machine interaction in automobile driving. Prog. Biocybern., 42:188–200.
Rasmussen, C.E., 2000. The infinite Gaussian mixture model. Advances in Neural Information Processing Systems, p.554–560.
Rehder, B., Hastie, R., 2001. Causal knowledge and categories: the effects of causal beliefs on categorization, induction, and similarity. J. Exp. Psychol., 130(3):323–360. http://dx.doi.org/10.1037/0096-3445.130.3.323
Russell, S.J., Norvig, P., 1995. Artificial Intelligence: a Modern Approach. Prentice Hall, Englewood Cliffs, USA.
Salimans, T., Goodfellow, I., Zaremba, W., et al., 2016. Improved techniques for training gans. Advances in Neural Information Processing Systems, p.2226–2234.
Salvi, C., Bricolo, E., Kounios, J., et al., 2016. Insight solutions are correct more often than analytic solutions. Think. Reason., 22(4):443–460. http://dx.doi.org/10.1080/13546783.2016.1141798
Samuel, A.L., 1988. Some studies in machine learning using the game of checkers. IBM J. Res. Dev., 44(1-2):206–226. http://dx.doi.org/10.1147/rd.441.0206
Saripalli, S., Montgomery, J.F., Sukhatme, G., 2003. Visually guided landing of an unmanned aerial vehicle. IEEE Trans. Robot. Autom., 19(3):371–380. http://dx.doi.org/10.1109/TRA.2003.810239
Saxe, R., Carey, S., 2006. The perception of causality in infancy. ACTA Psychol., 123(1-2):144–165. http://dx.doi.org/10.1016/j.actpsy.2006.05.005
Schlottmann, A., Ray, E.D., Mitchell, A., et al., 2006. Perceived physical and social causality in animated motions: spontaneous reports and ratings. ACTA Psychol., 123(1-2):112–143. http://dx.doi.org/10.1016/j.actpsy.2006.05.006
Schwartz, T., Zinnikus, I., Krieger, H.U., et al., 2016. Hybrid teams: flexible collaboration between humans, robots and virtual agents. German Conf. on Multiagent System Technologies, p.131–146.
Selfridge, O.G., 1988. Pandemonium: a paradigm for learning. National Physical Laboratory Conf., p.511–531.
Shader, R.I., 2016. Some reflections on IBM Watson and on women’s health. Clin. Therap., 38(1):1–2. http://dx.doi.org/10.1016/j.clinthera.2015.12.008
Sharp, C.S., Shakernia, O., Sastry, S.S., 2001. A vision system for landing an unmanned aerial vehicle. IEEE Int. Conf. on Robotics & Automation, p.1720–1727. http://dx.doi.org/10.1109/ROBOT.2001.932859
Shrivastava, P., 1995. Ecocentric management for a risk society. Acad. Manag. Rev., 20(1):118–137. http://dx.doi.org/10.5465/AMR.1995.9503271996
Shuaibu, B.M., Norwawi, N.M., Selamat, M.H., et al., 2015. Systematic review of Web application security development model. Artif. Intell. Rev., 43(2):259–276. http://dx.doi.org/10.1007/s10462-012-9375-6
Silver, D., Huang, A., Maddison, C.J., et al., 2016. Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587):484–489. http://dx.doi.org/10.1038/nature16961
Simon, H.A., 1969. The Sciences of the Artificial. MIT Press, Cambridge, USA.
Son, D., Lee, J., Qiao, S., et al., 2014. Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat. Nanotechnol., 9(5):397–404. http://dx.doi.org/10.1038/nnano.2014.38
Sternberg, R.J., 1984. Beyond IQ: a triarchic theory of human intelligence. Br. J. Educat. Stud., 7(2):269–287.
Sternberg, R.J., Davidson, J.E., 1983. Insight in the gifted. Educat. Psychol., 18(1):51–57. http://dx.doi.org/10.1080/00461528309529261
Stone, P., Brooks, R., Brynjolfsson, E., et al., 2016. Artificial Intelligence and Life in 2030. One Hundred Year Study on Artificial Intelligence: Report of the 2015-2016 Study Panel, Stanford University, Stanford, USA.
Sun, Y., Wang, X.G., Tang, X.O., 2014. Deep learning face representation from predicting 10,000 classes. IEEE Conf. on Computer Vision and Pattern Recognition, p.1891–1898. http://dx.doi.org/10.1109/CVPR.2014.244
Szegedy, C., Zaremba, W., Sutskever, I., et al., 2013. Intriguing properties of neural networks. ePrint Archive, arXiv:1312.6199.
Szolovits, P., Patil, R.S., Schwartz, W.B., 1988. Artificial intelligence in medical diagnosis. Ann. Int. Med., 108(1):80–87. http://dx.doi.org/10.1059/0003-4819-108-1-80
Tenenbaum, J.B., Kemp, C., Griffiths, T.L., et al., 2011. How to grow a mind: statistics, structure, and abstraction. Science, 331(6022):1279–1285. http://dx.doi.org/10.1126/science.1192788
Thielscher, M., 1997. Ramification and causality. Artif. Intell., 89(1-2):317–364. http://dx.doi.org/10.1016/S0004-3702(96)00033-1
Thielscher, M., 2001. The qualification problem: a solution to the problem of anomalous models. Artif. Intell., 131(1-2):1–37. http://dx.doi.org/10.1016/S0004-3702(01)00131-X
Thrun, S., Burgard, W., Fox, D., 1998. A probabilistic approach to concurrent mapping and localization for mobile robots. Mach. Learn., 5(3):253–271. http://dx.doi.org/10.1023/A:1008806205438
Tolman, E.C., 1948. Cognitive maps in rats and men. Psychol. Rev., 55(4):189–208. http://dx.doi.org/10.1037/h0061626
Tremoulet, P.D., Feldman, J., 2000. Perception of animacy from the motion of a single object. Perception, 29(8):943–951. http://dx.doi.org/10.1068/p3101
Tversky, A., Kahneman, D., 1983. Extensional versus intuitive reasoning: the conjunction fallacy in probability judgment. Psychol. Rev., 90(4):293–315. http://dx.doi.org/10.1037/0033-295X.90.4.293
van den Oord, A., Kalchbrenner, N., Kavukcuoglu, K., 2016. Pixel recurrent neural networks. ePrint Archive, arXiv:1601.06759.
Varaiya, P., 1993. Smart car on smart roads: problems of control. IEEE Trans. Autom. Contr., 38(2):195–207. http://dx.doi.org/10.1109/9.250509
Waldrop, M.M., 2015. Autonomous vehicles: no drivers required. Nature, 518(7537):20–23. http://dx.doi.org/10.1038/518020a
Walters, M.L., Koay, K.L., Syrdal, D.S., et al., 2013. Companion robots for elderly people: using theatre to investigate potential users’ views. IEEE Ro-Man, p.691–696. http://dx.doi.org/10.1109/ROMAN.2013.6628393
Wang, F.Y., 2004. Artificial societies, computational experiments, and parallel systems: a discussion on computational theory of complex social-economic systems. Compl. Syst. Compl. Sci., 1(4):25–35.
Wang, F.Y., Wang, X., Li, L.X., et al., 2016. Steps toward parallel intelligence. IEEE/CAA J. Autom. Sin., 3(4):345–348. http://dx.doi.org/10.1109/JAS.2016.7510067
Wang, J.J., Ma, Y.Q., Chen, S.T., et al., 2017. Fragmentation knowledge processing and networked artificial. Seieat. Sin. Inform., 47(1):1–22.
Wang, L.M., Xiong, Y.J., Wang, Z., et al., 2016. Temporal segment networks: towards good practices for deep action recognition. LNCS, 9912:20–36. http://dx.doi.org/10.1007/978-3-319-46484-8_2
Wei, P., Zheng, N.N., Zhao, Y.B., et al., 2013. Concurrent action detection with structural prediction. IEEE Int. Conf. on Computer Vision, p.3136–3143. http://dx.doi.org/10.1109/ICCV.2013.389
Wei, P., Zhao, Y., Zheng, N., et al., 2016. Modeling 4D human-object interactions for joint event segmentation, recognition, and object localization. IEEE Trans. Softw. Eng. http://dx.doi.org/10.1109/TPAMI.2016.2574712
Williams, R.J., Zipser, D., 1989. A learning algorithm for continually running fully recurrent neural networks. Neur. Comput., 1(2):270–280. http://dx.doi.org/10.1162/neco.1989.1.2.270
Williams, W.M., Sternberg, R.J., 1988. Group intelligence: why some groups are better than others. Intelligence, 12(4):351–377. http://dx.doi.org/10.1016/0160-2896(88)90002-5
Xiao, C.Y., Dymetman, M., Gardent, C., 2016. Sequencebased structured prediction for semantic parsing. Meeting of the Association for Computational Linguistics, p.1341–1350.
Yau, S.S., Gupta, S.K.S., Karim, F., et al., 2003. Smart classroom: enhancing collaborative learning using pervasive computing technology. ASEE Annual Conf. and Exposition, p.13633–13642.
Yegnanarayana, B., 1994. Artificial neural networks for pattern recognition. Sadhana, 19(2):189–238. http://dx.doi.org/10.1007/BF02811896
Youseff, L., Butrico, M., da Silva, D., 2008. Toward a unified ontology of cloud computing. Grid Computing Environments Workshop, p.1–10. http://dx.doi.org/10.1109/GCE.2008.4738443
Zadeh, L.A., 1996. Fuzzy logic and approximate reasoning. In: Advances in Fuzzy Systems -Applications and Theory: Volume 6. Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems. World Scientific Publishing, Singapore, p.238–259. http://dx.doi.org/10.1142/9789814261302_0016