Hunting French ducks in a noisy environment

Journal of Differential Equations - Tập 252 - Trang 4786-4841 - 2012
Nils Berglund1, Barbara Gentz2, Christian Kuehn3
1MAPMO, CNRS – UMR 6628, Université dʼOrléans, Fédération Denis Poisson, FR 2964, B.P. 6759, 45067 Orléans Cedex 2, France
2Faculty for Mathematics, University of Bielefeld, P.O. Box 10 01 31, 33501 Bielefeld, Germany
3Max Planck Institute for Physics of Complex Systems, Noethnitzer Str. 38, 01187 Dresden, Germany

Tài liệu tham khảo

Abramowitz, 1965 Aguilar, 2008, The effect of classical noise on a quantum two-level system, J. Math. Phys., 49, 102102, 10.1063/1.2988180 Allman, 2009, Breaking the chain, Stochastic Process. Appl., 119, 2645, 10.1016/j.spa.2009.01.007 Allman, 2011, A chain of interacting particles under strain, Stochastic Process. Appl., 121, 2014, 10.1016/j.spa.2011.05.007 Arnold, 2001, Recent progress in stochastic bifurcation theory, 15 Arnold, 2003 Arnold, 1994 Baer, 1986, Singular Hopf bifurcation to relaxation oscillations I, SIAM J. Appl. Math., 46, 721, 10.1137/0146047 Baer, 1992, Singular Hopf bifurcation to relaxation oscillations II, SIAM J. Appl. Math., 52, 1651, 10.1137/0152095 Bellman, 1960 Benoît, 1982, Systems lents-rapides dans R3 et leurs canards, 159 Benoît, 1985, Enlacements de canards, C. R. Acad. Sci. Paris, 300, 225 Benoît, 1990, Canards et enlacements, Publ. Math. Inst. Hautes Etudes Sci., 72, 63, 10.1007/BF02699131 Benoît, 1981, Chasse au canards, Collect. Math., 31, 37 Benoît, 1982, Les canards de R3, C. R. Math. Acad. Sci. Paris, 294, 483 Benzi, 1981, The mechanism of stochastic resonance, J. Phys. A, 14, L453, 10.1088/0305-4470/14/11/006 N. Berglund, D. Landon, Mixed-mode oscillations and interspike interval statistics in the stochastic FitzHugh–Nagumo model, arXiv:1105.1278v2, 2011, submitted for publication. Nils Berglund, Adiabatic dynamical systems and hysteresis, PhD thesis, EPFL, 1998. Berglund, 2002, Beyond the Fokker–Planck equation: Pathwise control of noisy bistable systems, J. Phys. A, 35, 2057, 10.1088/0305-4470/35/9/301 Berglund, 2002, The effect of additive noise on dynamical hysteresis, Nonlinearity, 15, 605, 10.1088/0951-7715/15/3/305 Berglund, 2002, Metastability in simple climate models: Pathwise analysis of slowly driven Langevin equations, Stoch. Dyn., 2, 327, 10.1142/S0219493702000455 Berglund, 2002, Pathwise description of dynamic pitchfork bifurcations with additive noise, Probab. Theory Related Fields, 122, 341, 10.1007/s004400100174 Berglund, 2002, A sample-paths approach to noise-induced synchronization: Stochastic resonance in a double-well potential, Ann. Appl. Probab., 12, 1419, 10.1214/aoap/1037125869 Berglund, 2003, Geometric singular perturbation theory for stochastic differential equations, J. Differential Equations, 191, 1, 10.1016/S0022-0396(03)00020-2 Berglund, 2006, Noise-Induced Phenomena in Slow–Fast Dynamical Systems. A Sample-Paths Approach Berglund, 2009, Stochastic dynamic bifurcations and excitability, 64 Berglund, 1999, Memory effects and scaling laws in slowly driven systems, J. Phys. A, 32, 15, 10.1088/0305-4470/32/1/005 Braaksma, 1998, Singular Hopf bifurcation in systems with fast and slow variables, J. Nonlinear Sci., 8, 457, 10.1007/s003329900058 Brons, 2008, Introduction to focus issue – mixed mode oscillations: experiment, computation, and analysis, Chaos, 18, 015101, 10.1063/1.2903177 Brøns, 2006, Mixed mode oscillations due to the generalized canard phenomenon, 39 Callot, 1978, Le problème de la “chasse au canard”, C. R. Acad. Sci. Paris Sér. A–B, 286, A1059 Degn, 1979, Bistability, oscillation, and chaos in an enzyme reaction, Ann. New York Acad. Sci., 316, 623, 10.1111/j.1749-6632.1979.tb29503.x M. Desroches, J. Guckenheimer, C. Kuehn, B. Krauskopf, H. Osinga, M. Wechselberger, Mixed-mode oscillations with multiple time scales, SIAM Rev. 54 (2) (2012), in press. Desroches, 2008, The geometry of slow manifolds near a folded node, SIAM J. Appl. Dyn. Syst., 7, 1131, 10.1137/070708810 Desroches, 2008, Mixed-mode oscillations and slow manifolds in the self-coupled FitzHugh–Nagumo system, Chaos, 18, 015107, 10.1063/1.2799471 Desroches, 2010, Numerical continuation of canard orbits in slow–fast dynamical systems, Nonlinearity, 23, 739, 10.1088/0951-7715/23/3/017 DeVille, 2005, Two distinct mechanisms of coherence in randomly perturbed dynamical systems, Phys. Rev. E (3), 72, 031105, 10.1103/PhysRevE.72.031105 Dickson, 2000, Properties and role of Ih in the pacing of subtreshold oscillations in entorhinal cortex layer II neurons, J. Neurophysiol., 83, 2562, 10.1152/jn.2000.83.5.2562 Diener, 1995 Catherine Doss, Michèle Thieullen, Oscillations and random perturbations of a FitzHugh–Nagumo system, preprint, hal-00395284, 2009. Dumortier, 1993, Techniques in the theory of local bifurcations: Blow-up, normal forms, nilpotent bifurcations, singular perturbations, 19 Dumortier, 1996, Canard Cycles and Center Manifolds, vol. 121(577) Eckhaus, 1983, Relaxation oscillations including a standard chase on French ducks, vol. 985, 449 Fenichel, 1979, Geometric singular perturbation theory for ordinary differential equations, J. Differential Equations, 31, 53, 10.1016/0022-0396(79)90152-9 Fox, 1989, Stochastic resonance in a double well, Phys. Rev. A, 39, 4148, 10.1103/PhysRevA.39.4148 Freidlin, 2000, Quasi-deterministic approximation, metastability and stochastic resonance, Phys. D, 137, 333, 10.1016/S0167-2789(99)00191-8 Freidlin, 2001, On stable oscillations and equilibriums induced by small noise, J. Stat. Phys., 103, 283, 10.1023/A:1004827921214 Freidlin, 1998 Gammaitoni, 1989, Periodically time-modulated bistable systems: Stochastic resonance, Phys. Rev. A, 40, 2114, 10.1103/PhysRevA.40.2114 Gammaitoni, 1998, Stochastic resonance, Rev. Modern Phys., 70, 223, 10.1103/RevModPhys.70.223 Grasman, 1987 Guckenheimer, 2008, Return maps of folded nodes and folded saddle-nodes, Chaos, 18, 10.1063/1.2790372 Guckenheimer, 2008, Singular Hopf bifurcation in systems with two slow variables, SIAM J. Appl. Dyn. Syst., 7, 1355, 10.1137/080718528 Guckenheimer, 2005, Canards at folded nodes, Mosc. Math. J., 5, 91, 10.17323/1609-4514-2005-5-1-91-103 Guckenheimer, 2010, Homoclinic orbits of the FitzHugh–Nagumo equation: Bifurcations in the full system, SIAM J. Appl. Dyn. Syst., 9, 138, 10.1137/090758404 Guckenheimer, 2011, A geometric model for mixed-mode oscillations in a chemical system, SIAM J. Appl. Dyn. Syst., 10, 92, 10.1137/100801950 Hairer, 1991 Herrmann, 2005, The exit problem for diffusions with time-periodic drift and stochastic resonance, Ann. Appl. Probab., 15, 36, 10.1214/105051604000000530 Herrmann, 2006, Transition times and stochastic resonance for multidimensional diffusions with time periodic drift: a large deviations approach, Ann. Appl. Probab., 16, 1851, 10.1214/105051606000000385 Highham, 2001, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43, 525, 10.1137/S0036144500378302 Hirsch, 2003 Hitczenko, 2009, Bursting oscillations induced by small noise, SIAM J. Appl. Math., 69, 1359, 10.1137/070711803 Hudson, 1979, An experimental study of multiple peak periodic and nonperiodic oscillations in the Belousov–Zhabotinskii reaction, J. Chem. Phys., 71, 1601, 10.1063/1.438487 Imkeller, 2002, Model reduction and stochastic resonance, Stoch. Dyn., 2, 463, 10.1142/S0219493702000583 Izhikevich, 2000, Neural excitability, spiking, and bursting, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 10, 1171, 10.1142/S0218127400000840 Jansons, 1998, Stochastic calculus: application to dynamic bifurcations and threshold crossings, J. Stat. Phys., 90, 227, 10.1023/A:1023207919293 Jones, 1994, Tracking invariant manifolds with differential forms in singularly perturbed systems, J. Differential Equations, 108, 64, 10.1006/jdeq.1994.1025 Jones, 1995, Geometric singular perturbation theory Kabanov, 2003, Two-Scale Stochastic Systems: Asymptotic Analysis and Control, vol. 49 Kallenberg, 2002 Kloeden, 2010 Mishchenko, 1994 Koper, 1995, Bifurcations of mixed-mode oscillations in a three-variable autonomous Van der Pol–Duffing model with a cross-shaped phase diagram, Phys. D, 80, 72, 10.1016/0167-2789(95)90061-6 Krupa, 2001, Extending geometric singular perturbation theory to nonhyperbolic points – fold and canard points in two dimensions, SIAM J. Math. Anal., 33, 286, 10.1137/S0036141099360919 Krupa, 2001, Extending slow manifolds near transcritical and pitchfork singularities, Nonlinearity, 14, 1473, 10.1088/0951-7715/14/6/304 Krupa, 2001, Geometric analysis of the singularly perturbed fold, vol. 122, 89 Krupa, 2001, Relaxation oscillation and canard explosion, J. Differential Equations, 174, 312, 10.1006/jdeq.2000.3929 Krupa, 2010, Local analysis near a folded saddle-node singularity, J. Differential Equations, 248, 2841, 10.1016/j.jde.2010.02.006 Kuehn, 2010, From first Lyapunov coefficients to maximal canards, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 20, 1467, 10.1142/S0218127410026617 C. Kuehn, A mathematical framework for critical transitions: bifurcations, fast–slow systems and stochastic dynamics, arXiv:1101.2908, 2011, submitted for publication. Kuehn, 2011, On decomposing mixed-mode oscillations and their return maps, Chaos, 21, 033107, 10.1063/1.3615231 C. Kuehn, Multiple Time Scale Dynamics, 2012, book in preparation. Kuske, 1999, Probability densities for noisy delay bifurcations, J. Stat. Phys., 96, 797, 10.1023/A:1004658609270 Kuske, 2002, Asymptotic analysis of noise sensitivity of a neuronal burster, Bull. Math. Biol., 64, 447, 10.1006/bulm.2002.0279 2010 Longtin, 1993, Stochastic resonance in neuron models, J. Stat. Phys., 70, 309, 10.1007/BF01053970 Longtin, 2000, Effect of noise on the tuning properties of excitable systems, Chaos Solitons Fractals, 11, 1835, 10.1016/S0960-0779(99)00120-4 McNamara, 1989, Theory of stochastic resonance, Phys. Rev. A, 39, 4854, 10.1103/PhysRevA.39.4854 Mishchenko, 1980 Mishchenko, 1980 Muratov, 2008, Noise-induced mixed-mode oscillations in a relaxation oscillator near the onset of a limit cycle, Chaos, 18, 015111, 10.1063/1.2779852 Muratov, 2005, Self-induced stochastic resonance in excitable systems, Phys. D, 210, 227, 10.1016/j.physd.2005.07.014 Neĭshtadt, 1987, Persistence of stability loss for dynamical bifurcations. I, Differ. Equ., 23, 1385 Nicolis, 1981, Stochastic aspects of climatic transitions—additive fluctuations, Tellus, 33, 225, 10.1111/j.2153-3490.1981.tb01746.x Øksendal, 2003 Petrov, 1992, Mixed-mode oscillations in chemical systems, J. Chem. Phys., 97, 6191, 10.1063/1.463727 Rotstein, 2008, Canard induced mixed-mode oscillations in a medial entorhinal cortex layer II stellate cell model, SIAM J. Appl. Dyn. Syst., 7, 1582, 10.1137/070699093 Scheffer, 2009, Early-warning signals for critical transitions, Nature, 461, 53, 10.1038/nature08227 Schmalfuss, 2008, Invariant manifolds for random dynamical systems with slow and fast variables, J. Dynam. Differential Equations, 20, 133, 10.1007/s10884-007-9089-7 Shampine, 1997, The MatLab ODE suite, SIAM J. Sci. Comput., 18, 1, 10.1137/S1064827594276424 Sowers, 2008, Random perturbations of canards, J. Theoret. Probab., 21, 824, 10.1007/s10959-008-0150-1 Stocks, 1989, Influence of random fluctuations on delayed bifurcations: The case of additive white noise, Phys. Rev. A, 40, 5361, 10.1103/PhysRevA.40.5361 Su, 2004, Effects of noise on elliptic bursters, Nonlinearity, 17, 133, 10.1088/0951-7715/17/1/009 Swift, 1991, Stochastic Landau equation with time-dependent drift, Phys. Rev. A, 43, 6572, 10.1103/PhysRevA.43.6572 Szmolyan, 2001, Canards in R3, J. Differential Equations, 177, 419, 10.1006/jdeq.2001.4001 Timmermann, 2003, Coherent resonant millennial-scale climate oscillations triggered by massive meltwater pulses, J. Climate, 16, 2569, 10.1175/1520-0442(2003)016<2569:CRMCOT>2.0.CO;2 S.-K. Tin, On the dynamics of tangent spaces near normally hyperbolic manifolds and singularly perturbed boundary value problems, PhD thesis, Brown University, 1994. Torrent, 1988, Stochastic-dynamics characterization of delayed laser threshold instability with swept control parameter, Phys. Rev. A, 38, 245, 10.1103/PhysRevA.38.245 Tuckwell, 1989 Verhulst, 2005 Wechselberger, 2005, Existence and bifurcation of canards in R3 in the case of a folded node, SIAM J. Appl. Dyn. Syst., 4, 101, 10.1137/030601995 M. Wechselberger, A propos de canards (apropos canards), preprint, 2010, 20 pp. Yu, 2008, Stochastic phase dynamics and noise-induced mixed-mode oscillations in coupled oscillators, Chaos, 18, 015112, 10.1063/1.2790369 Zagaris, 2004, Fast and slow dynamics for the computational singular perturbation method, Multiscale Model. Simul., 2, 613, 10.1137/040603577 Zagaris, 2005, Two perspectives on reduction of ordinary differential equations, Math. Nachr., 278, 1629, 10.1002/mana.200410328