Hunting French ducks in a noisy environment
Tài liệu tham khảo
Abramowitz, 1965
Aguilar, 2008, The effect of classical noise on a quantum two-level system, J. Math. Phys., 49, 102102, 10.1063/1.2988180
Allman, 2009, Breaking the chain, Stochastic Process. Appl., 119, 2645, 10.1016/j.spa.2009.01.007
Allman, 2011, A chain of interacting particles under strain, Stochastic Process. Appl., 121, 2014, 10.1016/j.spa.2011.05.007
Arnold, 2001, Recent progress in stochastic bifurcation theory, 15
Arnold, 2003
Arnold, 1994
Baer, 1986, Singular Hopf bifurcation to relaxation oscillations I, SIAM J. Appl. Math., 46, 721, 10.1137/0146047
Baer, 1992, Singular Hopf bifurcation to relaxation oscillations II, SIAM J. Appl. Math., 52, 1651, 10.1137/0152095
Bellman, 1960
Benoît, 1982, Systems lents-rapides dans R3 et leurs canards, 159
Benoît, 1985, Enlacements de canards, C. R. Acad. Sci. Paris, 300, 225
Benoît, 1990, Canards et enlacements, Publ. Math. Inst. Hautes Etudes Sci., 72, 63, 10.1007/BF02699131
Benoît, 1981, Chasse au canards, Collect. Math., 31, 37
Benoît, 1982, Les canards de R3, C. R. Math. Acad. Sci. Paris, 294, 483
Benzi, 1981, The mechanism of stochastic resonance, J. Phys. A, 14, L453, 10.1088/0305-4470/14/11/006
N. Berglund, D. Landon, Mixed-mode oscillations and interspike interval statistics in the stochastic FitzHugh–Nagumo model, arXiv:1105.1278v2, 2011, submitted for publication.
Nils Berglund, Adiabatic dynamical systems and hysteresis, PhD thesis, EPFL, 1998.
Berglund, 2002, Beyond the Fokker–Planck equation: Pathwise control of noisy bistable systems, J. Phys. A, 35, 2057, 10.1088/0305-4470/35/9/301
Berglund, 2002, The effect of additive noise on dynamical hysteresis, Nonlinearity, 15, 605, 10.1088/0951-7715/15/3/305
Berglund, 2002, Metastability in simple climate models: Pathwise analysis of slowly driven Langevin equations, Stoch. Dyn., 2, 327, 10.1142/S0219493702000455
Berglund, 2002, Pathwise description of dynamic pitchfork bifurcations with additive noise, Probab. Theory Related Fields, 122, 341, 10.1007/s004400100174
Berglund, 2002, A sample-paths approach to noise-induced synchronization: Stochastic resonance in a double-well potential, Ann. Appl. Probab., 12, 1419, 10.1214/aoap/1037125869
Berglund, 2003, Geometric singular perturbation theory for stochastic differential equations, J. Differential Equations, 191, 1, 10.1016/S0022-0396(03)00020-2
Berglund, 2006, Noise-Induced Phenomena in Slow–Fast Dynamical Systems. A Sample-Paths Approach
Berglund, 2009, Stochastic dynamic bifurcations and excitability, 64
Berglund, 1999, Memory effects and scaling laws in slowly driven systems, J. Phys. A, 32, 15, 10.1088/0305-4470/32/1/005
Braaksma, 1998, Singular Hopf bifurcation in systems with fast and slow variables, J. Nonlinear Sci., 8, 457, 10.1007/s003329900058
Brons, 2008, Introduction to focus issue – mixed mode oscillations: experiment, computation, and analysis, Chaos, 18, 015101, 10.1063/1.2903177
Brøns, 2006, Mixed mode oscillations due to the generalized canard phenomenon, 39
Callot, 1978, Le problème de la “chasse au canard”, C. R. Acad. Sci. Paris Sér. A–B, 286, A1059
Degn, 1979, Bistability, oscillation, and chaos in an enzyme reaction, Ann. New York Acad. Sci., 316, 623, 10.1111/j.1749-6632.1979.tb29503.x
M. Desroches, J. Guckenheimer, C. Kuehn, B. Krauskopf, H. Osinga, M. Wechselberger, Mixed-mode oscillations with multiple time scales, SIAM Rev. 54 (2) (2012), in press.
Desroches, 2008, The geometry of slow manifolds near a folded node, SIAM J. Appl. Dyn. Syst., 7, 1131, 10.1137/070708810
Desroches, 2008, Mixed-mode oscillations and slow manifolds in the self-coupled FitzHugh–Nagumo system, Chaos, 18, 015107, 10.1063/1.2799471
Desroches, 2010, Numerical continuation of canard orbits in slow–fast dynamical systems, Nonlinearity, 23, 739, 10.1088/0951-7715/23/3/017
DeVille, 2005, Two distinct mechanisms of coherence in randomly perturbed dynamical systems, Phys. Rev. E (3), 72, 031105, 10.1103/PhysRevE.72.031105
Dickson, 2000, Properties and role of Ih in the pacing of subtreshold oscillations in entorhinal cortex layer II neurons, J. Neurophysiol., 83, 2562, 10.1152/jn.2000.83.5.2562
Diener, 1995
Catherine Doss, Michèle Thieullen, Oscillations and random perturbations of a FitzHugh–Nagumo system, preprint, hal-00395284, 2009.
Dumortier, 1993, Techniques in the theory of local bifurcations: Blow-up, normal forms, nilpotent bifurcations, singular perturbations, 19
Dumortier, 1996, Canard Cycles and Center Manifolds, vol. 121(577)
Eckhaus, 1983, Relaxation oscillations including a standard chase on French ducks, vol. 985, 449
Fenichel, 1979, Geometric singular perturbation theory for ordinary differential equations, J. Differential Equations, 31, 53, 10.1016/0022-0396(79)90152-9
Fox, 1989, Stochastic resonance in a double well, Phys. Rev. A, 39, 4148, 10.1103/PhysRevA.39.4148
Freidlin, 2000, Quasi-deterministic approximation, metastability and stochastic resonance, Phys. D, 137, 333, 10.1016/S0167-2789(99)00191-8
Freidlin, 2001, On stable oscillations and equilibriums induced by small noise, J. Stat. Phys., 103, 283, 10.1023/A:1004827921214
Freidlin, 1998
Gammaitoni, 1989, Periodically time-modulated bistable systems: Stochastic resonance, Phys. Rev. A, 40, 2114, 10.1103/PhysRevA.40.2114
Gammaitoni, 1998, Stochastic resonance, Rev. Modern Phys., 70, 223, 10.1103/RevModPhys.70.223
Grasman, 1987
Guckenheimer, 2008, Return maps of folded nodes and folded saddle-nodes, Chaos, 18, 10.1063/1.2790372
Guckenheimer, 2008, Singular Hopf bifurcation in systems with two slow variables, SIAM J. Appl. Dyn. Syst., 7, 1355, 10.1137/080718528
Guckenheimer, 2005, Canards at folded nodes, Mosc. Math. J., 5, 91, 10.17323/1609-4514-2005-5-1-91-103
Guckenheimer, 2010, Homoclinic orbits of the FitzHugh–Nagumo equation: Bifurcations in the full system, SIAM J. Appl. Dyn. Syst., 9, 138, 10.1137/090758404
Guckenheimer, 2011, A geometric model for mixed-mode oscillations in a chemical system, SIAM J. Appl. Dyn. Syst., 10, 92, 10.1137/100801950
Hairer, 1991
Herrmann, 2005, The exit problem for diffusions with time-periodic drift and stochastic resonance, Ann. Appl. Probab., 15, 36, 10.1214/105051604000000530
Herrmann, 2006, Transition times and stochastic resonance for multidimensional diffusions with time periodic drift: a large deviations approach, Ann. Appl. Probab., 16, 1851, 10.1214/105051606000000385
Highham, 2001, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43, 525, 10.1137/S0036144500378302
Hirsch, 2003
Hitczenko, 2009, Bursting oscillations induced by small noise, SIAM J. Appl. Math., 69, 1359, 10.1137/070711803
Hudson, 1979, An experimental study of multiple peak periodic and nonperiodic oscillations in the Belousov–Zhabotinskii reaction, J. Chem. Phys., 71, 1601, 10.1063/1.438487
Imkeller, 2002, Model reduction and stochastic resonance, Stoch. Dyn., 2, 463, 10.1142/S0219493702000583
Izhikevich, 2000, Neural excitability, spiking, and bursting, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 10, 1171, 10.1142/S0218127400000840
Jansons, 1998, Stochastic calculus: application to dynamic bifurcations and threshold crossings, J. Stat. Phys., 90, 227, 10.1023/A:1023207919293
Jones, 1994, Tracking invariant manifolds with differential forms in singularly perturbed systems, J. Differential Equations, 108, 64, 10.1006/jdeq.1994.1025
Jones, 1995, Geometric singular perturbation theory
Kabanov, 2003, Two-Scale Stochastic Systems: Asymptotic Analysis and Control, vol. 49
Kallenberg, 2002
Kloeden, 2010
Mishchenko, 1994
Koper, 1995, Bifurcations of mixed-mode oscillations in a three-variable autonomous Van der Pol–Duffing model with a cross-shaped phase diagram, Phys. D, 80, 72, 10.1016/0167-2789(95)90061-6
Krupa, 2001, Extending geometric singular perturbation theory to nonhyperbolic points – fold and canard points in two dimensions, SIAM J. Math. Anal., 33, 286, 10.1137/S0036141099360919
Krupa, 2001, Extending slow manifolds near transcritical and pitchfork singularities, Nonlinearity, 14, 1473, 10.1088/0951-7715/14/6/304
Krupa, 2001, Geometric analysis of the singularly perturbed fold, vol. 122, 89
Krupa, 2001, Relaxation oscillation and canard explosion, J. Differential Equations, 174, 312, 10.1006/jdeq.2000.3929
Krupa, 2010, Local analysis near a folded saddle-node singularity, J. Differential Equations, 248, 2841, 10.1016/j.jde.2010.02.006
Kuehn, 2010, From first Lyapunov coefficients to maximal canards, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 20, 1467, 10.1142/S0218127410026617
C. Kuehn, A mathematical framework for critical transitions: bifurcations, fast–slow systems and stochastic dynamics, arXiv:1101.2908, 2011, submitted for publication.
Kuehn, 2011, On decomposing mixed-mode oscillations and their return maps, Chaos, 21, 033107, 10.1063/1.3615231
C. Kuehn, Multiple Time Scale Dynamics, 2012, book in preparation.
Kuske, 1999, Probability densities for noisy delay bifurcations, J. Stat. Phys., 96, 797, 10.1023/A:1004658609270
Kuske, 2002, Asymptotic analysis of noise sensitivity of a neuronal burster, Bull. Math. Biol., 64, 447, 10.1006/bulm.2002.0279
2010
Longtin, 1993, Stochastic resonance in neuron models, J. Stat. Phys., 70, 309, 10.1007/BF01053970
Longtin, 2000, Effect of noise on the tuning properties of excitable systems, Chaos Solitons Fractals, 11, 1835, 10.1016/S0960-0779(99)00120-4
McNamara, 1989, Theory of stochastic resonance, Phys. Rev. A, 39, 4854, 10.1103/PhysRevA.39.4854
Mishchenko, 1980
Mishchenko, 1980
Muratov, 2008, Noise-induced mixed-mode oscillations in a relaxation oscillator near the onset of a limit cycle, Chaos, 18, 015111, 10.1063/1.2779852
Muratov, 2005, Self-induced stochastic resonance in excitable systems, Phys. D, 210, 227, 10.1016/j.physd.2005.07.014
Neĭshtadt, 1987, Persistence of stability loss for dynamical bifurcations. I, Differ. Equ., 23, 1385
Nicolis, 1981, Stochastic aspects of climatic transitions—additive fluctuations, Tellus, 33, 225, 10.1111/j.2153-3490.1981.tb01746.x
Øksendal, 2003
Petrov, 1992, Mixed-mode oscillations in chemical systems, J. Chem. Phys., 97, 6191, 10.1063/1.463727
Rotstein, 2008, Canard induced mixed-mode oscillations in a medial entorhinal cortex layer II stellate cell model, SIAM J. Appl. Dyn. Syst., 7, 1582, 10.1137/070699093
Scheffer, 2009, Early-warning signals for critical transitions, Nature, 461, 53, 10.1038/nature08227
Schmalfuss, 2008, Invariant manifolds for random dynamical systems with slow and fast variables, J. Dynam. Differential Equations, 20, 133, 10.1007/s10884-007-9089-7
Shampine, 1997, The MatLab ODE suite, SIAM J. Sci. Comput., 18, 1, 10.1137/S1064827594276424
Sowers, 2008, Random perturbations of canards, J. Theoret. Probab., 21, 824, 10.1007/s10959-008-0150-1
Stocks, 1989, Influence of random fluctuations on delayed bifurcations: The case of additive white noise, Phys. Rev. A, 40, 5361, 10.1103/PhysRevA.40.5361
Su, 2004, Effects of noise on elliptic bursters, Nonlinearity, 17, 133, 10.1088/0951-7715/17/1/009
Swift, 1991, Stochastic Landau equation with time-dependent drift, Phys. Rev. A, 43, 6572, 10.1103/PhysRevA.43.6572
Szmolyan, 2001, Canards in R3, J. Differential Equations, 177, 419, 10.1006/jdeq.2001.4001
Timmermann, 2003, Coherent resonant millennial-scale climate oscillations triggered by massive meltwater pulses, J. Climate, 16, 2569, 10.1175/1520-0442(2003)016<2569:CRMCOT>2.0.CO;2
S.-K. Tin, On the dynamics of tangent spaces near normally hyperbolic manifolds and singularly perturbed boundary value problems, PhD thesis, Brown University, 1994.
Torrent, 1988, Stochastic-dynamics characterization of delayed laser threshold instability with swept control parameter, Phys. Rev. A, 38, 245, 10.1103/PhysRevA.38.245
Tuckwell, 1989
Verhulst, 2005
Wechselberger, 2005, Existence and bifurcation of canards in R3 in the case of a folded node, SIAM J. Appl. Dyn. Syst., 4, 101, 10.1137/030601995
M. Wechselberger, A propos de canards (apropos canards), preprint, 2010, 20 pp.
Yu, 2008, Stochastic phase dynamics and noise-induced mixed-mode oscillations in coupled oscillators, Chaos, 18, 015112, 10.1063/1.2790369
Zagaris, 2004, Fast and slow dynamics for the computational singular perturbation method, Multiscale Model. Simul., 2, 613, 10.1137/040603577
Zagaris, 2005, Two perspectives on reduction of ordinary differential equations, Math. Nachr., 278, 1629, 10.1002/mana.200410328