Human-to-mouse prion-like propagation of mutant huntingtin protein

Springer Science and Business Media LLC - Tập 132 - Trang 577-592 - 2016
Iksoo Jeon1, Francesca Cicchetti2,3, Giulia Cisbani2, Suji Lee1, Endan Li1, Jiwoo Bae1, Nayeon Lee1, Ling Li1, Wooseok Im4, Manho Kim4, Hyun Sook Kim1, Seung-Hun Oh1, Tae-Aug Kim1, Jung Jae Ko1, Benoit Aubé2, Abid Oueslati2,5, Yun Joong Kim6, Jihwan Song1
1CHA Stem Cell Institute, CHA University, Seongnam-si, Republic of Korea
2Centre de recherche du CHU de Québec (CHUQ), Québec, Canada
3Département de Psychiatrie and Neurosciences, Université Laval, Québec, Canada
4Department of Neurology, Seoul National University Hospital, Seoul, Korea
5Département de Médecine Moléculaire, Université Laval, Québec, Canada
6Ilsong Institute of Life Science, Hallym University Anyang Korea

Tóm tắt

Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder of the central nervous system (CNS) that is defined by a CAG expansion in exon 1 of the huntingtin gene leading to the production of mutant huntingtin (mHtt). To date, the disease pathophysiology has been thought to be primarily driven by cell-autonomous mechanisms, but, here, we demonstrate that fibroblasts derived from HD patients carrying either 72, 143 and 180 CAG repeats as well as induced pluripotent stem cells (iPSCs) also characterized by 143 CAG repeats can transmit protein aggregates to genetically unrelated and healthy host tissue following implantation into the cerebral ventricles of neonatal mice in a non-cell-autonomous fashion. Transmitted mHtt aggregates gave rise to both motor and cognitive impairments, loss of striatal medium spiny neurons, increased inflammation and gliosis in associated brain regions, thereby recapitulating the behavioural and pathological phenotypes which characterizes HD. In addition, both in vitro work using co-cultures of mouse neural stem cells with 143 CAG fibroblasts and the SH-SY5Y human neuroblastoma cell line as well as in vivo experiments conducted in newborn wild-type mice suggest that exosomes can cargo mHtt between cells triggering the manifestation of HD-related behaviour and pathology. This is the first evidence of human-to-mouse prion-like propagation of mHtt in the mammalian brain; a finding which will help unravel the molecular bases of HD pathology as well as to lead to the development of a whole new range of therapies for neurodegenerative diseases of the CNS.

Tài liệu tham khảo

Aguzzi A, Rajendran L (2009) The transcellular spread of cytosolic amyloids, prions, and prionoids. Neuron 64:783–790. doi:10.1016/j.neuron.2009.12.016 Angot E, Steiner JA, Lema Tomé CM et al (2012) Alpha-synuclein cell-to-cell transfer and seeding in grafted dopaminergic neurons in vivo. PLoS One 7:e39465. doi:10.1371/journal.pone.0039465 Babcock DT, Ganetzky B (2015) Transcellular spreading of huntingtin aggregates in the Drosophila brain. Proc Natl Acad Sci USA 112:E5427–E5433. doi:10.1073/pnas.1516217112 Brundin P, Melki R, Kopito R (2010) Prion-like transmission of protein aggregates in neurodegenerative diseases. Nat Rev Mol Cell Biol 11:301–307. doi:10.1038/nrm2873 Chow WNV, Luk HW, Chan HYE, Lau K-F (2012) Degradation of mutant huntingtin via the ubiquitin/proteasome system is modulated by FE65. Biochem J 443:681–689. doi:10.1042/BJ20112175 Cicchetti F, Gould PV, Parent A (1996) Sparing of striatal neurons coexpressing calretinin and substance P (NK1) receptor in Huntington’s disease. Brain Res 19(730):232–237. doi:10.1016/0006-8993(96)00307-1 Cicchetti F, Lacroix S, Cisbani G et al (2014) Mutant huntingtin is present in neuronal grafts in Huntington’s disease patients. Ann Neurol 76:31–42. doi:10.1002/ana.24174 Cisbani G, Cicchetti F (2012) An in vitro perspective on the molecular mechanisms underlying mutant huntingtin protein toxicity. Cell Death Dis 3:e382. doi:10.1038/cddis.2012.121 Costanzo M, Abounit S, Marzo L et al (2013) Transfer of polyglutamine aggregates in neuronal cells occurs in tunneling nanotubes. J Cell Sci 126:3678–3685. doi:10.1242/jcs.126086 Crook ZR, Housman D (2011) Huntington’s disease: can mice lead the way to treatment? Neuron 69:423–435. doi:10.1016/j.neuron.2010.12.035 Danzer KM, Kranich LR, Ruf WP et al (2012) Exosomal cell-to-cell transmission of alpha synuclein oligomers. Mol Neurodegener 7:42. doi:10.1186/1750-1326-7-42 de Calignon A, Polydoro M, Suarez-Calvet M et al (2012) Propagation of tau pathology in a model of early Alzheimer’s disease. Neuron 73:685–697. doi:10.1016/j.neuron.2011.11.033 Desplats P, Lee HJ, Bae EJ et al (2009) Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein. Proc Natl Acad Sci USA 106:13010–13015. doi:10.1073/pnas.0903691106 Ellrichmann G, Petrasch-Parwez E, Lee DH et al (2011) Efficacy of fumaric acid esters in the R6/2 and YAC128 models of Huntington’s disease. PLoS One 6(1):e16172. doi:10.1371/journal.pone.0016172 Garden GA, La Spada AR (2012) Intercellular (mis)communication in neurodegenerative disease. Neuron 73:886–901. doi:10.1016/j.neuron.2012.02.017 Goedert M, Clavaguera F, Tolnay M (2010) The propagation of prion-like protein inclusions in neurodegenerative diseases. Trends Neurosci 33:317–325. doi:10.1016/j.tins.2010.04.003 Grad LI, Yerbury JJ, Turner BJ et al (2014) Intercellular propagated misfolding of wild-type Cu/Zn superoxide dismutase occurs via exosome-dependent and -independent mechanisms. Proc Natl Acad Sci USA 111:3620–3625. doi:10.1073/pnas.1312245111 Gusella JF, Wexler NS, Conneally PM et al (1983) A polymorphic DNA marker genetically linked to Huntington’s disease. Nature 306:234–238. doi:10.1038/306234a0 Hansen C, Angot E, Bergström AL et al (2011) alpha-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells. J Clin Invest 121:715–725. doi:10.1172/JCI43366 Herrera F, Tenreiro S, Miller-Fleming L, Outeiro TF (2011) Visualization of cell-to-cell transmission of mutant huntingtin oligomers. PLoS Curr 3:RRN1210. doi:10.1371/currents.RRN1210 Jeon I, Lee N, Li JY et al (2012) Neuronal properties, in vivo effects, and pathology of a Huntington’s disease patient-derived induced pluripotent stem cells. Stem Cells 30:2054–2062. doi:10.1002/stem.1135 Jucker M, Walker LC (2013) Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 501:45–51. doi:10.1038/nature12481 Kordower JH, Chu Y, Hauser RA, Freeman TB, Olanow CW (2008) Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med 14:504–506. doi:10.1038/nm1747 Li JY, Englund E, Holton JL et al (2008) Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med 14:501–503. doi:10.1038/nm1746 Lin CH, Tallaksen-Greene S, Chien WM et al (2001) Neurological abnormalities in a knock-in mouse model of Huntington’s disease. Hum Mol Genet 10:137–144. doi:10.1093/hmg/10.2.137 Luk KC, Kehm V, Carroll J et al (2012) Pathological alpha-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338:949–953. doi:10.1126/science.1227157 Luk KC, Kehm VM, Zhang B, O’Brien P, Trojanowski JQ, Lee VM (2012) Intracerebral inoculation of pathological alpha-synuclein initiates a rapidly progressive neurodegenerative alpha-synucleinopathy in mice. J Exp Med 209:975–986. doi:10.1084/jem.20112457 Marangoni M, Adalbert R, Janeckova L et al (2014) Age-related axonal swellings precede other neuropathological hallmarks in a knock-in mouse model of Huntington’s disease. Neurobiol Aging 35(10):2382–2393. doi:10.1016/j.neurobiolaging.2014.04.024 Menalled L, El-Khodor BF, Patry M et al (2009) Systematic behavioral evaluation of Huntington’s disease transgenic and knock-in mouse models. Neurobiol Dis 35:319–336. doi:10.1016/j.nbd.2009.05.007 Meyer-Luehmann M, Coomaraswamy J, Bolmont T et al (2006) Exogenous induction of cerebral beta-amyloidogenesis is governed by agent and host. Science 313:1781–1784. doi:10.1126/science.1131864 Meyer-Luehmann M, Stalder M, Herzig MC et al (2003) Extracellular amyloid formation and associated pathology in neural grafts. Nat Neurosci 6:370–377. doi:10.1038/nn1022 Mfunyi CM, Vaillancourt M, Vitry J et al (2015) Exosome release following activation of the dendritic cell immunoreceptor: a potential role in HIV-1 pathogenesis. Virology 484:103–112. doi:10.1016/j.virol.2015.05.013 Nguyen HHP, Cenci MA (2015) Behavioral neurobiology of Huntington’s disease and Parkinson’s disease. Springer, Berlin Okita K, Matsumura Y, Sato Y et al (2011) A more efficient method to generate integration-free human iPS cells. Nat Methods 8:409–412. doi:10.1038/nmeth.1591 Olanow CW, Prusiner SB (2009) Is Parkinson’s disease a prion disorder? Proc Natl Acad Sci USA 106:12571–12572. doi:10.1073/pnas.0906759106 Pearce MMP, Spartz EJ, Hong W, Luo L, Kopito RR (2015) Prion-like transmission of neuronal huntingtin aggregates to phagocytic glia in the Drosophila brain. Nat Commun 6:6768. doi:10.1038/ncomms7768 Pecho-Vrieseling E, Rieker C, Fuchs S et al (2014) Transneuronal propagation of mutant huntingtin contributes to non-cell autonomous pathology in neurons. Nat Neurosci 17:1064–1072. doi:10.1038/nn.3761 Peelaerts W, Bousset L, Van der Perren A et al (2015) α-Synuclein strains cause distinct synucleinopathies after local and systemic administration. Nature 522:340–344. doi:10.1038/nature14547 Phillips W, Shannon KM, Barker RA (2008) The current clinical management of Huntington’s disease. Mov Disord 23:1491–1504. doi:10.1002/mds.21971 Pouladi MA, Graham RK, Karasinska JM et al (2009) Prevention of depressive behaviour in the YAC128 mouse model of Huntington disease by mutation at residue 586 of huntingtin. Brain 132:919–932. doi:10.1093/brain/awp006 Prusiner SB, Woerman AL, Mordes DA et al (2015) Evidence for α-synuclein prions causing multiple system atrophy in humans with parkinsonism. Proc Natl Acad Sci USA. doi:10.1073/pnas.1514475112 Rajendran L, Honsho M, Zahn TR et al (2006) Alzheimer’s disease beta-amyloid peptides are released in association with exosomes. Proc Natl Acad Sci USA 103:11172–11177. doi:10.1073/pnas.0603838103 Ren P-H, Lauckner JE, Kachirskaia I, Heuser JE, Melki R, Kopito RR (2009) Cytoplasmic penetration and persistent infection of mammalian cells by polyglutamine aggregates. Nat Cell Biol 11:219–225. doi:10.1038/ncb1830 Soto C (2012) Transmissible proteins: expanding the prion heresy. Cell 149:968–977. doi:10.1016/j.cell.2012.05.007 Théry C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol Chapter 3:Unit 3.22. doi:10.1002/0471143030.cb0322s30 Van Raamsdonk JM, Pearson J, Slow EJ, Hossain SM, Leavitt BR, Hayden MR (2005) Cognitive dysfunction precedes neuropathology and motor abnormalities in the YAC128 mouse model of Huntington’s disease. J Neurosci 25:4169–4180. doi:10.1523/JNEUROSCI.0590-05.2005 Yang W, Dunlap JR, Andrews RB, Wetzel R (2002) Aggregated polyglutamine peptides delivered to nuclei are toxic to mammalian cells. Hum Mol Genet 11:2905–2917. doi:10.1093/hmg/11.23.2905 Zuccato C, Valenza M, Cattaneo E (2010) Molecular mechanisms and potential therapeutical targets in Huntington’s disease. Physiol Rev 90:905–981. doi:10.1152/physrev.00041.2009