Human mitochondrial complex I assembly: A dynamic and versatile process

Biochimica et Biophysica Acta (BBA) - Bioenergetics - Tập 1767 Số 10 - Trang 1215-1227 - 2007
Rutger O. Vogel1, Jan Smeitink2, Leo Nijtmans2
1Nijmegen Centre for Mitochondrial Disorders, Department of Pediatrics, Radboud University Nijmegen Medical Centre, Geert Grooteplein 10, 6500 HB Nijmegen, The Netherlands.
2Nijmegen Centre for Mitochondrial Disorders, Department of Pediatrics, Radboud University Nijmegen Medical Centre, Geert Grooteplein 10, PO BOX 9101, 6500 HB, Nijmegen, The Netherlands

Tóm tắt

Từ khóa


Tài liệu tham khảo

Galkin, 1999, →H+/2e- stoichiometry in NADH-quinone reductase reactions catalyzed by bovine heart submitochondrial particles, FEBS Lett., 451, 157, 10.1016/S0014-5793(99)00575-X

Galkin, 2006, The proton pumping stoichiometry of purified mitochondrial complex I reconstituted into proteoliposomes, Biochim. Biophys. Acta, 1757, 1575, 10.1016/j.bbabio.2006.10.001

Vinogradov, 2001, Respiratory complex I: structure, redox components, and possible mechanisms of energy transduction, Biochemistry (Mosc.), 66, 1086, 10.1023/A:1012476728710

Brandt, 2006, Energy converting NADH:Quinone oxidoreductase (Complex I), Annu. Rev. Biochem., 75, 69, 10.1146/annurev.biochem.75.103004.142539

Bottcher, 2002, A novel, enzymatically active conformation of the Escherichia coli NADH:Ubiquinone oxidoreductase (Complex I), J. Biol. Chem., 277, 1797, 10.1074/jbc.M112357200

Mamedova, 2004, Substrate-induced conformational change in bacterial complex I, J. Biol. Chem., 279, 2383, 10.1074/jbc.M401539200

Brandt, 2005, Structure–function relationships in mitochondrial complex I of the strictly aerobic yeast Yarrowia lipolytica, Biochem. Soc. Trans., 33, 84, 10.1042/BST0330840

Hinchliffe, 2005, Organization of iron–sulfur clusters in respiratory complex I, Science, 309, 771, 10.1126/science.1113988

Baranova, 2007, Projection structure of the membrane domain of Escherichia coli respiratory complex I at 8 A resolution, J. Mol. Biol., 366, 14, 10.1016/j.jmb.2006.11.026

Maklashina, 1994, Hysteresis behavior of Complex I from bovine heart mitochondria: kinetic and thermodynamic parameters of retarded reverse transition from the inactive to active state, Biokhimiia, 59, 946

Vinogradov, 1998, Catalytic properties of the mitochondrial NADH-ubiquinone oxidoreductase (complex I) and the pseudo-reversible active/inactive enzyme transition, Biochim. Biophys. Acta, 1364, 169, 10.1016/S0005-2728(98)00026-7

Grivennikova, 2001, Catalytic activity of NADH-ubiquinone oxidoreductase (complex I) in intact mitochondria. Evidence for the slow active/inactive transition, J. Biol. Chem., 276, 9038, 10.1074/jbc.M009661200

Grivennikova, 2003, The transition between active and de-activated forms of NADH:Ubiquinone oxidoreductase (Complex I) in the mitochondrial membrane of Neurospora crassa, Biochem. J., 369, 619, 10.1042/bj20021165

Maklashina, 2003, Active/de-active transition of respiratory complex I in bacteria, fungi, and animals, Biochim. Biophys. Acta, 1606, 95, 10.1016/S0005-2728(03)00087-2

Leonard, 1987, Three-dimensional structure of NADH:Ubiquinone reductase (Complex I) from Neurospora mitochondria determined by electron microscopy of membrane crystals, J. Mol. Biol., 194, 277, 10.1016/0022-2836(87)90375-5

Hofhaus, 1991, Electron microscopic analysis of the peripheral and membrane parts of mitochondrial NADH dehydrogenase (Complex I), J. Mol. Biol., 221, 1027, 10.1016/0022-2836(91)80190-6

Guenebaut, 1997, Three-dimensional structure of NADH-dehydrogenase from Neurospora crassa by electron microscopy and conical tilt reconstruction, J. Mol. Biol., 265, 409, 10.1006/jmbi.1996.0753

Radermacher, 2006, The three-dimensional structure of complex I from Yarrowia lipolytica: a highly dynamic enzyme, J. Struct. Biol., 154, 269, 10.1016/j.jsb.2006.02.011

Sazanov, 2006, Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus, Science, 311, 1430, 10.1126/science.1123809

Sazanov, 2007, Respiratory complex I: mechanistic and structural insights provided by the crystal structure of the hydrophilic domain, Biochemistry, 46, 2275, 10.1021/bi602508x

Janssen, 2006, Mitochondrial complex I: structure, function and pathology, J. Inherit. Metab. Dis., 29, 499, 10.1007/s10545-006-0362-4

Leif, 1993, Escherichia coli NADH dehydrogenase I, a minimal form of the mitochondrial complex I, Biochem. Soc. Trans., 21, 998, 10.1042/bst0210998

Friedrich, 1993, Attempts to define distinct parts of NADH:Ubiquinone oxidoreductase (Complex I), J. Bioenerg. Biomembranes, 25, 331, 10.1007/BF00762458

Galante, 1978, Resolution of complex I and isolation of NADH dehydrogenase and an iron–sulfur protein, Methods Enzymol., 53, 15, 10.1016/S0076-6879(78)53007-3

Sazanov, 2000, Resolution of the membrane domain of bovine complex I into subcomplexes: implications for the structural organization of the enzyme, Biochemistry, 39, 7229, 10.1021/bi000335t

Sazanov, 2000, Cryo-electron crystallography of two sub-complexes of bovine complex I reveals the relationship between the membrane and peripheral arms, J. Mol. Biol., 302, 455, 10.1006/jmbi.2000.4079

Fearnley, 2001, GRIM-19, a cell death regulatory gene product, is a subunit of bovine mitochondrial NADH:Ubiquinone oxidoreductase (Complex I), J. Biol. Chem., 276, 38345, 10.1074/jbc.C100444200

Huang, 2004, GRIM-19, a cell death regulatory protein, is essential for assembly and function of mitochondrial complex I, Mol. Cell. Biol., 24, 8447, 10.1128/MCB.24.19.8447-8456.2004

Huang, 2007, Coupling mitochondrial respiratory chain to cell death: an essential role of mitochondrial complex I in the interferon-beta and retinoic acid-induced cancer cell death, Cell Death Differ., 14, 327, 10.1038/sj.cdd.4402004

Ma, 2007, GRIM-19 associates with the serine protease HtrA2 for promoting cell death, Oncogene, 26, 4842, 10.1038/sj.onc.1210287

Ricci, 2004, Disruption of mitochondrial function during apoptosis is mediated by caspase cleavage of the P75 subunit of complex I of the electron transport chain, Cell, 117, 773, 10.1016/j.cell.2004.05.008

Runswick, 1991, Presence of an acyl carrier protein in NADH:Ubiquinone oxidoreductase from bovine heart mitochondria, FEBS Lett., 286, 121, 10.1016/0014-5793(91)80955-3

Sackmann, 1991, The acyl-carrier protein in Neurospora crassa mitochondria is a subunit of NADH:Ubiquinone reductase (Complex I), Eur. J. Biochem., 200, 463, 10.1111/j.1432-1033.1991.tb16205.x

Zensen, 1992, De novo synthesis and desaturation of fatty acids at the mitochondrial acyl-carrier protein, a subunit of NADH:Ubiquinone oxidoreductase in Neurospora crassa, FEBS Lett., 310, 179, 10.1016/0014-5793(92)81324-F

Cronan, 2005, Mammalian mitochondria contain a soluble acyl carrier protein, FEBS Lett., 579, 4892, 10.1016/j.febslet.2005.07.077

Schneider, 1995, Different respiratory-defective phenotypes of Neurospora crassa and Saccharomyces cerevisiae after inactivation of the gene encoding the mitochondrial acyl carrier protein, Curr. Genet., 29, 1, 10.1007/BF00313188

Schneider, 1997, Mitochondrial fatty acid synthesis: a relic of endosymbiontic origin and a specialized means for respiration, FEBS Lett., 407, 249, 10.1016/S0014-5793(97)00360-8

Meyer, 2007, Mitochondrial acyl carrier proteins in Arabidopsis thaliana are predominantly soluble matrix proteins and none can be confirmed as subunits of respiratory complex I, Plant Mol. Biol., 64, 319, 10.1007/s11103-007-9156-9

Yamaguchi, 1998, Mitochondrial NADH-Ubiquinone oxidoreductase (Complex I). Effect of substrates on the fragmentation of subunits by trypsin, J. Biol. Chem., 273, 8094, 10.1074/jbc.273.14.8094

Schulte, 1999, A reductase/isomerase subunit of mitochondrial NADH:Ubiquinone oxidoreductase (Complex I) carries an NADPH and is involved in the biogenesis of the complex, J. Mol. Biol., 292, 569, 10.1006/jmbi.1999.3096

Schulte, 2001, Biogenesis of respiratory complex I, J. Bioenerg. Biomembranes, 33, 205, 10.1023/A:1010730919074

Yamaguchi, 2000, The multiple nicotinamide nucleotide-binding subunits of bovine heart mitochondrial NADH:ubiquinone oxidoreductase (complex I), Eur. J. Biochem., 267, 329, 10.1046/j.1432-1327.2000.00999.x

Abdrakhmanova, 2006, Tight binding of NADPH to the 39-kDa subunit of complex I is not required for catalytic activity but stabilizes the multiprotein complex, Biochim. Biophys. Acta., 1757, 1676, 10.1016/j.bbabio.2006.09.003

Papa, 2002, The NDUFS4 nuclear gene of complex I of mitochondria and the CAMP cascade, Biochim. Biophys. Acta, 1555, 147, 10.1016/S0005-2728(02)00270-0

Papa, 2002, The NADH:ubiquinone oxidoreductase (complex I) of the mammalian respiratory chain and the CAMP cascade, J. Bioenerg. Biomembranes, 34, 1, 10.1023/A:1013863018115

Papa, 2002, Complex I and the CAMP cascade in human physiopathology, Biosci. Rep., 22, 3, 10.1023/A:1016004921277

Chen, 2004, The phosphorylation of subunits of complex I from bovine heart mitochondria, J. Biol. Chem., 279, 26036, 10.1074/jbc.M402710200

Raha, 2002, Control of oxygen free radical formation from mitochondrial complex I: roles for protein kinase A and pyruvate dehydrogenase kinase, Free Radic. Biol. Med., 32, 421, 10.1016/S0891-5849(01)00816-4

Schilling, 2005, Mass spectrometric identification of a novel phosphorylation site in subunit NDUFA10 of bovine mitochondrial complex I, FEBS Lett., 579, 2485, 10.1016/j.febslet.2005.03.061

Palmisano, 2007, The phosphorylation pattern of bovine heart complex I subunits, Proteomics, 7, 1575, 10.1002/pmic.200600801

Gabaldon, 2005, Tracing the evolution of a large protein complex in the eukaryotes, NADH:ubiquinone oxidoreductase (complex I), J. Mol. Biol., 348, 857, 10.1016/j.jmb.2005.02.067

Carroll, 2002, Definition of the nuclear encoded protein composition of bovine heart mitochondrial complex I. Identification of two new subunits, J. Biol. Chem., 277, 50311, 10.1074/jbc.M209166200

Friedrich, 1997, Modular evolution of the respiratory NADH:ubiquinone oxidoreductase and the origin of its modules, J. Theor. Biol., 187, 529, 10.1006/jtbi.1996.0387

Finel, 1998, Organization and evolution of structural elements within complex I, Biochim. Biophys. Acta, 1364, 112, 10.1016/S0005-2728(98)00022-X

Friedrich, 2000, The respiratory complex I of bacteria, archaea and eukarya and its module common with membrane-bound multisubunit hydrogenases, FEBS Lett., 479, 1, 10.1016/S0014-5793(00)01867-6

Mathiesen, 2003, The ‘antiporter module’ of respiratory chain complex I includes the MrpC/NuoK subunit — a revision of the modular evolution scheme, FEBS Lett., 549, 7, 10.1016/S0014-5793(03)00767-1

Friedrich, 2004, The gross structure of the respiratory complex I: a Lego system, Biochim. Biophys. Acta, 1608, 1, 10.1016/j.bbabio.2003.10.002

Videira, 1998, Complex I from the fungus Neurospora crassa, Biochim. Biophys. Acta, 1364, 89, 10.1016/S0005-2728(98)00020-6

Vogel, 2004, Complex I assembly: a puzzling problem, Curr. Opin. Neurol., 17, 179, 10.1097/00019052-200404000-00016

Braun, 1998, Characterization of the overproduced NADH dehydrogenase fragment of the NADH:Ubiquinone oxidoreductase (complex I) from Escherichia coli, Biochemistry, 37, 1861, 10.1021/bi971176p

Kervinen, 2006, The MELAS mutations 3946 and 3949 perturb the critical structure in a conserved loop of the ND1 subunit of mitochondrial complex I, Hum. Mol. Genet., 15, 2543, 10.1093/hmg/ddl176

Kao, 2005, Characterization of the membrane domain subunit NuoJ (ND6) of the NADH-quinone oxidoreductase from Escherichia coli by chromosomal DNA manipulation, Biochemistry, 44, 3562, 10.1021/bi0476477

Holt, 2003, The location of NuoL and NuoM subunits in the membrane domain of the Escherichia coli complex I: implications for the mechanism of proton pumping, J. Biol. Chem., 278, 43114, 10.1074/jbc.M308247200

Baranova, 2007, Single particle analysis confirms distal location of subunits NuoL and NuoM in Escherichia coli complex I, J. Struct. Biol., 159, 238, 10.1016/j.jsb.2007.01.009

Remacle, 2001, Mutations inactivating mitochondrial genes in Chlamydomonas reinhardtii, Biochem. Soc. Trans., 29, 442, 10.1042/bst0290442

Cardol, 2002, Impact of mutations affecting ND mitochondria-encoded subunits on the activity and assembly of complex I in Chlamydomonas. Implication for the structural organization of the enzyme, J. Mol. Biol., 319, 1211, 10.1016/S0022-2836(02)00407-2

Cardol, 2006, ND3 and ND4L subunits of mitochondrial complex I, both nucleus encoded in Chlamydomonas reinhardtii, are required for activity and assembly of the enzyme, eukaryot, Cell, 5, 146

Weidner, 1992, Molecular genetic studies of complex I in Neurospora crassa, Aspergillus niger and Escherichia coli, Biochim. Biophys. Acta, 1101, 177

Schulte, 1994, In vivo dissection of the mitochondrial respiratory NADH:ubiquinone oxidoreductase (complex I), Biochim. Biophys. Acta, 1187, 121, 10.1016/0005-2728(94)90096-5

Videira, 2001, On complex I and other NADH:ubiquinone reductases of Neurospora crassa mitochondria, J. Bioenerg. Biomembranes, 33, 197, 10.1023/A:1010778802236

Videira, 2002, From NADH to ubiquinone in neurospora mitochondria, Biochim. Biophys. Acta, 1555, 187, 10.1016/S0005-2728(02)00276-1

Tuschen, 1990, Assembly of NADH:ubiquinone reductase (complex I) in Neurospora mitochondria. Independent pathways of nuclear-encoded and mitochondrially encoded subunits, J. Mol. Biol., 213, 845, 10.1016/S0022-2836(05)80268-2

Kuffner, 1998, Involvement of two novel chaperones in the assembly of mitochondrial NADH:ubiquinone oxidoreductase (complex I), J. Mol. Biol., 283, 409, 10.1006/jmbi.1998.2114

Nehls, 1992, Characterization of assembly intermediates of NADH:ubiquinone oxidoreductase (complex I) accumulated in neurospora mitochondria by gene disruption, J. Mol. Biol., 227, 1032, 10.1016/0022-2836(92)90519-P

Duarte, 1995, Inactivation of genes encoding subunits of the peripheral and membrane arms of neurospora mitochondrial complex I and effects on enzyme assembly, Genetics, 139, 1211, 10.1093/genetics/139.3.1211

Marques, 2005, Composition of complex I from Neurospora crassa and disruption of two “accessory” subunits, Biochim. Biophys. Acta, 1707, 211, 10.1016/j.bbabio.2004.12.003

Rasmusson, 1998, Physiological, biochemical and molecular aspects of mitochondrial complex I in plants, Biochim. Biophys. Acta, 1364, 101, 10.1016/S0005-2728(98)00021-8

Marienfeld, 1994, The maize NCS2 abnormal growth mutant has a chimeric Nad4–Nad7 mitochondrial gene and is associated with reduced complex I function, Genetics, 138, 855, 10.1093/genetics/138.3.855

Karpova, 1999, A partially assembled complex I in NAD4-deficient mitochondria of maize, Plant J., 17, 511, 10.1046/j.1365-313X.1999.00401.x

Brangeon, 2000, Defective splicing of the first Nad4 intron is associated with lack of several complex I subunits in the Nicotiana sylvestris NMS1 nuclear mutant, Plant J., 21, 269, 10.1046/j.1365-313x.2000.00679.x

Pla, 1995, Deletion of the last two exons of the mitochondrial Nad7 gene results in lack of the NAD7 polypeptide in a Nicotiana sylvestris CMS mutant, Mol. Gen. Genet., 248, 79, 10.1007/BF02456616

Lelandais, 1998, Organization and expression of the mitochondrial genome in the Nicotiana sylvestris CMSII mutant, Genetics, 150, 873, 10.1093/genetics/150.2.873

Gutierres, 1999, In the Nicotiana sylvestris CMSII mutant, a recombination-mediated change 5′ to the first exon of the mitochondrial Nad1 gene is associated with lack of the NADH:ubiquinone oxidoreductase (complex I) NAD1 subunit, Eur. J. Biochem., 261, 361, 10.1046/j.1432-1327.1999.00310.x

Gutierres, 1997, Lack of mitochondrial and nuclear-encoded subunits of complex I and alteration of the respiratory chain in Nicotiana sylvestris mitochondrial deletion mutants, Proc. Natl. Acad. Sci. U. S. A., 94, 3436, 10.1073/pnas.94.7.3436

Pineau, 2005, Targeting the NAD7 subunit to mitochondria restores a functional complex I and a wild type phenotype in the Nicotiana sylvestris CMS II mutant lacking Nad7, J. Biol. Chem., 280, 25994, 10.1074/jbc.M500508200

Perales, 2005, Disruption of a nuclear gene encoding a mitochondrial gamma carbonic anhydrase reduces complex I and supercomplex I + III2 levels and alters mitochondrial physiology in Arabidopsis, J. Mol. Biol., 350, 263, 10.1016/j.jmb.2005.04.062

Heazlewood, 2003, Mitochondrial complex I from Arabidopsis and rice: orthologs of mammalian and fungal components coupled with plant-specific subunits, Biochim. Biophys. Acta, 1604, 159, 10.1016/S0005-2728(03)00045-8

Perales, 2004, Gamma carbonic anhydrase like complex interact with plant mitochondrial complex I, Plant Mol. Biol., 56, 947, 10.1007/s11103-004-6324-z

Sunderhaus, 2006, Carbonic anhydrase subunits form a matrix-exposed domain attached to the membrane arm of mitochondrial complex I in plants, J. Biol. Chem., 281, 6482, 10.1074/jbc.M511542200

Hatefi, 1976, Composition and enzymatic properties of the mitochondrial NADH- and NADPH-ubiquinone reductase (complex I), Adv. Exp. Med. Biol., 74, 150, 10.1007/978-1-4684-3270-1_13

Han, 1988, Studies on the structure of NADH:ubiquinone oxidoreductase complex: topography of the subunits of the iron–sulfur flavoprotein component, Arch. Biochem. Biophys., 267, 49, 10.1016/0003-9861(88)90055-0

Han, 1989, Studies on the structure of NADH:ubiquinone oxidoreductase complex: topography of the subunits of the iron–sulfur protein component, Arch. Biochem. Biophys., 275, 166, 10.1016/0003-9861(89)90360-3

Finel, 1992, Resolution of NADH:ubiquinone oxidoreductase from bovine heart mitochondria into two subcomplexes, one of which contains the redox centers of the enzyme, Biochemistry, 31, 11425, 10.1021/bi00161a022

Finel, 1994, Isolation and characterisation of subcomplexes of the mitochondrial nADH:ubiquinone oxidoreductase (complex I), Eur. J. Biochem., 226, 237, 10.1111/j.1432-1033.1994.tb20046.x

Carroll, 2003, Analysis of the subunit composition of complex I from bovine heart mitochondria, Mol. Cell Proteomics, 2, 117, 10.1074/mcp.M300014-MCP200

Carroll, 2006, Bovine complex I is a complex of forty-five different subunits, J. Biol. Chem., 281, 32724, 10.1074/jbc.M607135200

Hall, 1990, Respiratory chain-linked NADH dehydrogenase. Mechanisms of assembly, J. Biol. Chem., 265, 16484, 10.1016/S0021-9258(17)46248-X

Hofhaus, 1993, Lack of assembly of mitochondrial DNA-encoded subunits of respiratory NADH dehydrogenase and loss of enzyme activity in a human cell mutant lacking the mitochondrial ND4 gene product, EMBO J., 12, 3043, 10.1002/j.1460-2075.1993.tb05973.x

Hofhaus, 1995, Efficient selection and characterization of mutants of a human cell line which are defective in mitochondrial DNA-encoded subunits of respiratory NADH dehydrogenase, Mol. Cell Biol., 15, 964, 10.1128/MCB.15.2.964

Bai, 1998, The MtDNA-encoded ND6 subunit of mitochondrial NADH dehydrogenase is essential for the assembly of the membrane arm and the respiratory function of the enzyme, EMBO J., 17, 4848, 10.1093/emboj/17.16.4848

Au, 1999, The NDUFA1 gene product (MWFE Protein) is essential for activity of complex I in mammalian mitochondria, Proc. Natl. Acad. Sci. U. S. A., 96, 4354, 10.1073/pnas.96.8.4354

Scheffler, 2001, Molecular genetics of the mammalian NADH-ubiquinone oxidoreductase, J. Bioenerg. Biomembranes, 33, 243, 10.1023/A:1010739120891

Yadava, 2002, Species-specific and mutant MWFE proteins. Their effect on the assembly of a functional mammalian mitochondrial complex I, J. Biol. Chem., 277, 21221, 10.1074/jbc.M202016200

Potluri, 2004, The role of the ESSS protein in the assembly of a functional and stable mammalian mitochondrial complex I (NADH-ubiquinone oxidoreductase), Eur. J. Biochem., 271, 3265, 10.1111/j.1432-1033.2004.04260.x

Yadava, 2004, Development and characterization of a conditional mitochondrial complex I assembly system, J. Biol. Chem., 279, 12406, 10.1074/jbc.M313588200

Yadava, 2004, Import and orientation of the MWFE protein in mitochondrial NADH-ubiquinone oxidoreductase, Mitochondrion, 4, 1, 10.1016/j.mito.2004.04.002

Chomyn, 2001, Mitochondrial genetic control of assembly and function of complex I in mammalian cells, J. Bioenerg. Biomembranes, 33, 251, 10.1023/A:1010791204961

Bourges, 2004, Structural organization of mitochondrial human complex I: role of the ND4 and ND5 mitochondria-encoded subunits and interaction with prohibitin, Biochem. J., 383, 491, 10.1042/BJ20040256

Bai, 2000, Tight control of respiration by NADH dehydrogenase ND5 subunit gene expression in mouse mitochondria, Mol. Cell. Biol., 20, 805, 10.1128/MCB.20.3.805-815.2000

Kirby, 2003, Low mutant load of mitochondrial DNA G13513A mutation can cause Leigh's disease, Ann. Neurol., 54, 473, 10.1002/ana.10687

Kirby, 2004, NDUFS6 mutations are a novel cause of lethal neonatal mitochondrial complex I deficiency, J. Clin. Invest., 114, 837, 10.1172/JCI20683

McFarland, 2004, De novo mutations in the mitochondrial ND3 gene as a cause of infantile mitochondrial encephalopathy and complex I deficiency, Ann. Neurol., 55, 58, 10.1002/ana.10787

Antonicka, 2003, Identification and characterization of a common set of complex I assembly intermediates in mitochondria from patients with complex I deficiency, J. Biol. Chem., 278, 43081, 10.1074/jbc.M304998200

Ugalde, 2007, Mutated ND2 impairs mitochondrial complex I assembly and leads to Leigh syndrome, Mol. Genet. Metab., 90, 1, 10.1016/j.ymgme.2006.08.003

Kirby, 2004, Mutations of the mitochondrial ND1 gene as a cause of MELAS, J. Med. Genet., 41, 784, 10.1136/jmg.2004.020537

Triepels, 2001, Human complex I defects can be resolved by monoclonal antibody analysis into distinct subunit assembly patterns, J. Biol. Chem., 276, 8892, 10.1074/jbc.M009903200

Iuso, 2006, Dysfunctions of cellular oxidative metabolism in patients with mutations in the NDUFS1 and NDUFS4 genes of complex I, J. Biol. Chem., 281, 10374, 10.1074/jbc.M513387200

Ugalde, 2004, Differences in assembly or stability of complex I and other mitochondrial OXPHOS complexes in inherited complex I deficiency, Hum. Mol. Genet., 13, 659, 10.1093/hmg/ddh071

Ogilvie, 2005, A molecular chaperone for mitochondrial complex I assembly is mutated in a progressive encephalopathy, J. Clin. Invest., 115, 2784, 10.1172/JCI26020

Scacco, 2003, Pathological mutations of the human NDUFS4 gene of the 18-kDa (AQDQ) subunit of complex I affect the expression of the protein and the assembly and function of the complex, J. Biol. Chem., 278, 44161, 10.1074/jbc.M307615200

Procaccio, 2004, Late-onset Leigh syndrome in a patient with mitochondrial complex I NDUFS8 mutations, Neurology, 62, 1899, 10.1212/01.WNL.0000125251.56131.65

Fernandez-Moreira, 2007, X-linked NDUFA1 gene mutations associated with mitochondrial encephalomyopathy, Ann. Neurol., 61, 73, 10.1002/ana.21036

Ugalde, 2004, Human mitochondrial complex I assembles through the combination of evolutionary conserved modules: a framework to interpret complex I deficiencies, Hum. Mol. Genet., 13, 2461, 10.1093/hmg/ddh262

Vogel, 2007, Identification of mitochondrial complex I assembly intermediates by tracing tagged NDUFS3 demonstrates the entry point of mitochondrial subunits, J. Biol. Chem., 282, 7582, 10.1074/jbc.M609410200

Lazarou, 2007, Analysis of the assembly profiles for mitochondrial and nuclear encoded subunits into complex I, Mol. Cell Biol., 27, 4228, 10.1128/MCB.00074-07

Schagger, 2000, Supercomplexes in the respiratory chains of yeast and mammalian mitochondria, EMBO J., 19, 1777, 10.1093/emboj/19.8.1777

Schagger, 2001, The ratio of oxidative phosphorylation complexes I–V in bovine heart mitochondria and the composition of respiratory chain supercomplexes, J. Biol. Chem., 276, 37861, 10.1074/jbc.M106474200

Schagger, 2002, Respiratory chain supercomplexes of mitochondria and bacteria, Biochim. Biophys. Acta, 1555, 154, 10.1016/S0005-2728(02)00271-2

Wittig, 2006, Supercomplexes and subcomplexes of mitochondrial oxidative phosphorylation, Biochim. Biophys. Acta, 1757, 1066, 10.1016/j.bbabio.2006.05.006

Boekema, 2007, Supramolecular structure of the mitochondrial oxidative phosphorylation system, J. Biol. Chem., 282, 1, 10.1074/jbc.R600031200

Acin-Perez, 2004, Respiratory complex III is required to maintain complex I in mammalian mitochondria, Mol. Cell., 13, 805, 10.1016/S1097-2765(04)00124-8

Stroh, 2004, Assembly of respiratory complexes I, III, and IV into NADH oxidase supercomplex stabilizes complex I in Paracoccus denitrificans, J. Biol. Chem., 279, 500, 10.1074/jbc.M309505200

Diaz, 2006, Cytochrome c oxidase is required for the assembly/stability of respiratory complex I in mouse fibroblasts, Mol. Cell. Biol., 26, 4872, 10.1128/MCB.01767-05

D'Aurelio, 2006, Respiratory chain supercomplexes set the threshold for respiration defects in human MtDNA mutant cybrids, Hum. Mol. Genet., 15, 2157, 10.1093/hmg/ddl141

Li, 2007, An assembled complex IV maintains the stability and activity of complex I in mammalian mitochondria, J. Biol. Chem., 282, 17557, 10.1074/jbc.M701056200

McKenzie, 2007, Analysis of mitochondrial subunit assembly into respiratory chain complexes using blue native polyacrylamide gel electrophoresis, Anal. Biochem., 364, 128, 10.1016/j.ab.2007.02.022

Bonnefoy, 1994, OXA1, a Saccharomyces cerevisiae nuclear gene whose sequence is conserved from prokaryotes to eukaryotes controls cytochrome oxidase biogenesis, J. Mol. Biol., 239, 201, 10.1006/jmbi.1994.1363

Rep, 1996, MBA1 encodes a mitochondrial membrane-associated protein required for biogenesis of the respiratory chain, FEBS Lett., 388, 185, 10.1016/0014-5793(96)00543-1

Ritossa, 1962, A new puffing pattern induced by temperature shock and DNP in Drosophila, Experientia, 18, 571, 10.1007/BF02172188

Ritossa, 1996, Discovery of the heat shock response, Cell Stress, Chaperones, 1, 97, 10.1379/1466-1268(1996)001<0097:DOTHSR>2.3.CO;2

Pelham, 1984, Hsp70 accelerates the recovery of nucleolar morphology after heat shock, EMBO J., 3, 3095, 10.1002/j.1460-2075.1984.tb02264.x

Pelham, 1986, Speculations on the functions of the major heat shock and glucose-regulated proteins, Cell, 46, 959, 10.1016/0092-8674(86)90693-8

Morange, 2005, What history tells us II. The discovery of chaperone function, J. Biosci., 30, 461, 10.1007/BF02703718

Ellis, 1987, Proteins as molecular chaperones, Nature, 328, 378, 10.1038/328378a0

Ellis, 1989, The molecular chaperone concept, Biochem. Soc. Symp., 55, 145

Ellis, 1991, Molecular chaperones, Annu. Rev. Biochem., 60, 321, 10.1146/annurev.bi.60.070191.001541

Ellis, 1993, The general concept of molecular chaperones, Philos. Trans. R. Soc. Lond., B Biol. Sci., 339, 257, 10.1098/rstb.1993.0023

Janssen, 2002, CIA30 complex I assembly factor: a candidate for human complex I deficiency?, Hum. Genet., 110, 264, 10.1007/s00439-001-0673-3

Vogel, 2005, Human mitochondrial complex I assembly is mediated by NDUFAF1, FEBS J., 272, 5317, 10.1111/j.1742-4658.2005.04928.x

Dunning, 2007, Human CIA30 is involved in the early assembly of mitochondrial complex I and mutations in its gene cause disease, EMBO J., 26, 3227, 10.1038/sj.emboj.7601748

Vogel, 2007, Investigation of the complex I assembly chaperones B17.2L and NDUFAF1 in a cohort of CI deficient patients, Mol. Genet. Metab., 91, 176, 10.1016/j.ymgme.2007.02.007

Vogel, 2007, Cytosolic signaling protein ecsit also localizes to mitochondria where it interacts with chaperone NDUFAF1 and functions in complex I assembly, Genes Dev., 21, 615, 10.1101/gad.408407

McBride, 2006, Mitochondria: more than just a powerhouse, Curr. Biol., 16, R551, 10.1016/j.cub.2006.06.054

Tsuneoka, 2005, A novel myc-target gene, mimitin, that is involved in cell proliferation of esophageal squamous cell carcinoma, J. Biol. Chem., 280, 19977, 10.1074/jbc.M501231200

Vahsen, 2004, AIF deficiency compromises oxidative phosphorylation, EMBO J., 23, 4679, 10.1038/sj.emboj.7600461

Joza, 2005, Muscle-specific loss of apoptosis-inducing factor leads to mitochondrial dysfunction, skeletal muscle atrophy, and dilated cardiomyopathy, Mol. Cell Biol., 25, 10261, 10.1128/MCB.25.23.10261-10272.2005

Modjtahedi, 2006, Apoptosis-inducing factor: vital and lethal, Trends Cell Biol., 16, 264, 10.1016/j.tcb.2006.03.008

Kopp, 1999, ECSIT is an evolutionarily conserved intermediate in the Toll/IL-1 signal transduction pathway, Genes Dev., 13, 2059, 10.1101/gad.13.16.2059

Kopp, 1999, The toll-receptor family and control of innate immunity, Curr. Opin. Immunol., 11, 13, 10.1016/S0952-7915(99)80003-X