Human endometrial cell coculture reduces the endocrine disruptor toxicity on mouse embryo development

Myeong-Seop Lee1, Young-Sang Lee2, Hae-Hyeog Lee3, Ho-Yeon Song4
1Industry Academy Cooperation Foundation, Soonchunhyang University, Asan, South Korea
2Department of Biomedical Technolgy, Soonchunhyang University, Asan, South Korea
3Department of Obstetrics and Gynecology, Soonchunhyang University Bucheon Hospital, Bucheon, South Korea
4Department of Microbiology, School of Medicine, Soonchunhyang University, Cheonan, South Korea

Tóm tắt

Previous studies suggested that endocrine disruptors (ED) are toxic on preimplantation embryos and inhibit development of embryos in vitro culture. However, information about the toxicity of endocrine disruptors on preimplantation development of embryo in human reproductive environment is lacking. Bisphenol A (BPA) and Aroclor 1254 (polychlorinated biphenyls) were used as endocrine disruptors in this study. Mouse 2-cell embryos were cultured in medium alone or vehicle or co-cultured with human endometrial epithelial layers in increasing ED concentrations. At 72 hours the percentage of normal blastocyst were decreased by ED in a dose-dependent manner while the co-culture system significantly enhanced the rate and reduced the toxicity of endocrine disruptors on the embryonic development in vitro. In conclusion, although EDs have the toxic effect on embryo development, the co-culture with human endometrial cell reduced the preimplantation embryo from it thereby making human reproductive environment protective to preimplantation embryo from the toxicity of endocrine disruptors.

Tài liệu tham khảo

Colborn T, vom Saal FS, Soto AM: Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Health Perspect 1993, 101: 378–384. 10.1289/ehp.93101378 Daston GP, et al.: Environmental estrogen and reproductive health: a discussion of the human and environmental data. Reprod Toxicol 1997, 11: 465–481. 10.1016/S0890-6238(97)00014-2 Sonnenschein C, Soto AM: An updated review of environmental estrogen and androgen mimics and antagonists. J Steroid Biochem Mol Biol 1998, 65: 143–150. 10.1016/S0960-0760(98)00027-2 Brotons JA, et al.: Xenoestrogens released from lacquer coatings in food cans. Environ Health Perspect 1995, 103: 608–612. 10.1289/ehp.95103608 Olea N, et al.: Estrogenicity of resin-base composites and sealants used in dentistry. Environ Health Perspect 1996, 104: 298–305. 10.1289/ehp.96104298 Kim JC, et al.: Evaluation of developmental toxicity in rats exposed to the environmental estrogen bisphenol A during pregnancy. Life Sci 2001, 69: 2611–2625. 10.1016/S0024-3205(01)01341-8 Coletti D, et al.: Polychlorobiphenys inhibit skeletal muscle differentiation in culture. Toxicol Appl Pharmacol 2001, 175: 226–233. 10.1006/taap.2001.9237 Schaefer WR, et al.: Exposure of human endometrium to environmental estrogens, antiandrogens, and organochlorine compounds. Fertil Steril 2000, 74: 558–563. 10.1016/S0015-0282(00)00704-4 Pauwels A, et al.: The relation between levels of selected PCB congeners in human serum and follicular fluid. Chemosphere 1999, 39: 2433–2441. 10.1016/S0045-6535(99)00170-8 Takai Y, et al.: Estrogen receptor-mediated effects of a xenoestrogen, bisphenol A, on preimplantation mouse embryos. Biochem Biophys Res Commun 2000, 270: 918–921. 10.1006/bbrc.2000.2548 Carrasco I, Cebral E, Benitez R, Vantman D: Hydrosalpinx fluid affects murine embryonic development in a coculture system with epithelial endometrial cells. Fertil Steril 2001, 75: 1004–1008. 10.1016/S0015-0282(01)01683-1 Valbuena D, et al.: Increasing levels of estradiol are deterious to embryonic implantation because they directly affect the embryo. Fertil Steril 2001, 76: 962–968. 10.1016/S0015-0282(01)02018-0 Varayoud J, Ramos JG, Bosquiazzo VL, Lower M, Munoz-de-Toro M, Luque EH: Neonatal exposure to bisphenol A alters rat uterine implantation-associated gene expression and reduces the number of implantation sites. Endocrinology 2011,152(3):1101–1111. 10.1210/en.2009-1037 Berger RG, Foster WG, de Catanzaro D: Bisphenol-A exposure during the period of blastocyst implantation alters uterine morphology and perturbs measures of estrogen and progesterone receptor expression in mice. Reprod Toxicol 2010,30(3):393–400. 10.1016/j.reprotox.2010.06.006 Ryan IP, Schriock ED, Taylor RN: Isolation, characterization, and comparison of human endometrial and endometriosis cells in vitro. J Clin Endocrinol Metab 1994, 78: 642–649. 10.1210/jc.78.3.642 Pierro E, et al.: Stromal-epithelial interactions modulate estrogen responsiveness in normal human endometrium. Biol Reprod 2001, 64: 831–838. 10.1095/biolreprod64.3.831 Fein GG, et al.: Prenatal exposure to polychlorinated biphenyls: effects on birth size and gestational age. J Pediatr 1984, 105: 315–320. 10.1016/S0022-3476(84)80139-0 Swain WR: Effects of organochlorine chemicals on the reproductive outcome of humans who consumed contaminated great lake fish: an epidemiological consideration. J Toxicol Environ Health 1991, 33: 587–639. 10.1080/15287399109531541 Krishnan A, et al.: Bisphenol-A: an estrogenic substance is released from polycarbonate flasks during autoclaving. Endocrinology 1993, 132: 2279–2286. 10.1210/en.132.6.2279 Nakagawa Y, Tayama S: Metabolism and cytotoxicity of bisphenol A and other bisphenols in isolated rat hepatocytes. Arch Toxicol 2000, 74: 99–105. 10.1007/s002040050659 Kholkute SD, Rodriguez J, Dukelow WR: Reproductive toxicology of Aroclor-1254: effects on oocyte, spermatozoa, in vitro fertilization, and embryo development in the mouse. Reprod Toxicol 1994, 8: 487–493. 10.1016/0890-6238(94)90031-0 Kholkute SD, Rodriguez J, Dukelow WR: Effects of polychlorinated biphenyls (PCBs) on in vitro fertilization in the mouse. Reprod Toxicol 1994, 8: 69–73. 10.1016/0890-6238(94)90069-8 Hernandez O, Dukelow WR: Aroclor-1254 effects on the in vitro development of 8-cell mouse embryos. Bul Environ Contam Toxicol 1998, 60: 773–780. 10.1007/s001289900693 Pfeiffer E, Rosenberg B, Deuschel S, Metzler M: Interference with microtubules and induction of micronuclei in vitro by various bisphenols. Mut Res 1997, 390: 21–31. 10.1016/S0165-1218(96)00161-9 Tsutui T, et al.: Bisphenol-A induces cellular transformation, aneuploidy and DNA adduct formation in cultured Syrian hamster embryo cells. Int J Cancer 1998, 75: 290–294. 10.1002/(SICI)1097-0215(19980119)75:2<290::AID-IJC19>3.0.CO;2-H Takai Y, et al.: Preimplantation exposure to bisphenol A advances postnatal development. Reprod Toxicol 2001, 15: 71–74. Aghajanova L, Giudice LC: Effect of bisphenol A on human endometrial stromal fibroblasts in vitro. Reprod Biomed Online 2011,22(3):249–56. Epub 2010 Dec 23 10.1016/j.rbmo.2010.12.007 Bredhult C, Backlin BM: Olovsson M Effects of some endocrine disruptors on the proliferation and viability of human endometrial endothelial cells in vitro. Reprod Toxicol 2007,23(4):550–559. 10.1016/j.reprotox.2007.03.006 Bavister BD: Culture of preimplantation embryos: facts and artifacts. Hum Reprod Update 1995, 1: 91–148. 10.1093/humupd/1.2.91