Human blood monocytes support persistence, but not replication of the intracellular pathogen C. pneumoniae

BMC Immunology - Tập 15 - Trang 1-11 - 2014
Tanja Buchacher1, Herbert Wiesinger-Mayr2, Klemens Vierlinger2, Beate M Rüger3, Gerold Stanek4, Michael B Fischer3,5, Viktoria Weber1,5
1Christian Doppler Laboratory for Innovative Therapy Approaches in Sepsis, Danube University Krems, Krems, Austria
2Austrian Institute of Technology, Molecular Medicine, Vienna, Austria
3Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
4Institute for Hygiene and Applied Immunology, Medical University of Vienna, Vienna, Austria
5Department for Health Sciences and Biomedicine, Danube University Krems, Krems, Austria

Tóm tắt

Intracellular pathogens have devised various mechanisms to subvert the host immune response in order to survive and replicate in host cells. Here, we studied the infection of human blood monocytes with the intracellular pathogen C. pneumoniae and the effect on cytokine and chemokine profiles in comparison to stimulation with LPS. Monocytes purified from peripheral blood mononuclear cells by negative depletion were infected with C. pneumoniae. While immunofluorescence confirmed the presence of chlamydial lipopolysaccharide (LPS) in the cytoplasm of infected monocytes, real-time PCR did not provide evidence for replication of the intracellular pathogen. Complementary to PCR, C. pneumoniae infection was confirmed by an oligonucleotide DNA microarray for the detection of intracellular pathogens. Raman microspectroscopy revealed different molecular fingerprints for infected and non-infected monocytes, which were mainly due to changes in lipid and fatty acid content. Stimulation of monocytes with C. pneumoniae or with LPS induced similar profiles of tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-6, but higher levels of IL-1β, IL-12p40 and IL-12p70 for C. pneumoniae which were statistically significant. C. pneumoniae also induced release of the chemokines MCP-1, MIP-1α and MIP-1β, and CXCL-8, which correlated with TNF-α secretion. Infection of human blood monocytes with intracellular pathogens triggers altered cytokine and chemokine pattern as compared to stimulation with extracellular ligands such as LPS. Complementing conventional methods, an oligonucleotide DNA microarray for the detection of intracellular pathogens as well as Raman microspectroscopy provide useful tools to trace monocyte infection.

Tài liệu tham khảo

Finlay BB, McFadden G: Anti-immunology: evasion of the host immune system by bacterial and viral pathogens. Cell. 2006, 124 (4): 767-782. 10.1016/j.cell.2006.01.034. Khan N, Gowthaman U, Pahari S, Agrewala JN: Manipulation of costimulatory molecules by intracellular pathogens: veni, vidi, vici!!. PLoS Pathog. 2012, 8 (6): e1002676-10.1371/journal.ppat.1002676. Kern JM, Maass V, Maass M: Molecular pathogenesis of chronic Chlamydia pneumoniae infection: a brief overview. Clin Microbiol Infect. 2009, 15 (1): 36-41. 10.1111/j.1469-0691.2008.02631.x. Saikku P: Seroepidemiology in Chlamydia pneumoniae– atherosclerosis association. Eur Heart J. 2002, 23 (4): 263-264. 10.1053/euhj.2001.2913. Von HL: Role of persistent infection in the control and severity of asthma: focus on Chlamydia pneumoniae. Eur Respir J. 2002, 19 (3): 546-556. 10.1183/09031936.02.00254402. Contini C, Grilli A, Badia L, Guardigni V, Govoni M, Seraceni S: Detection of Chlamydophila pneumoniae in patients with arthritis: significance and diagnostic value. Rheumatol Int. 2011, 31 (10): 1307-1313. 10.1007/s00296-010-1460-z. Tang YW, Sriram S, Li H, Yao SY, Meng S, Mitchell WM, Stratton CW: Qualitative and quantitative detection of Chlamydophila pneumoniae DNA in cerebrospinal fluid from multiple sclerosis patients and controls. PloS one. 2009, 4 (4): e5200-10.1371/journal.pone.0005200. Balin BJ, Little CS, Hammond CJ, Appelt DM, Whittum-Hudson JA, Gerard HC, Hudson AP: Chlamydophila pneumoniae and the etiology of late-onset Alzheimer's disease. J Alzheimers Dis. 2008, 13 (4): 371-380. Di Pietro M, Schiavoni G, Sessa V, Pallotta F, Costanzo G, Sessa R: Chlamydia pneumoniae and osteoporosis-associated bone loss: a new risk factor?. Osteoporos Int. 2013, 24 (5): 1677-1682. 10.1007/s00198-012-2217-1. Rizzo A, Di Domenico M, Carratelli CR, Mazzola N, Paolillo R: Induction of proinflammatory cytokines in human osteoblastic cells by Chlamydia pneumoniae. Cytokine. 2011, 56 (2): 450-457. 10.1016/j.cyto.2011.06.027. Wyrick PB: Chlamydia trachomatis persistence in vitro: an overview. J Infect Dis. 2010, 201 (Suppl 2): S88-95. 10.1086/652394. Schachter J: Biology of Chlamydia trachomatis. Sexually Transmitted Diseases. Edited by: Holmes KK SP, Mård PA, Lemon SM, Stamm WE, Piot P, Wasserheit JN. 1999, McGraw-Hill, New York, 391-405. Gaydos CA, Summersgill JT, Sahney NN, Ramirez JA, Quinn TC: Replication of Chlamydia pneumoniae in vitro in human macrophages, endothelial cells, and aortic artery smooth muscle cells. Infect Immun. 1996, 64 (5): 1614-1620. Byrne GI, Kalayoglu MV: Chlamydia pneumoniae and atherosclerosis: links to the disease process. Am Heart J. 1999, 138 (5 Pt 2): S488-490. 10.1016/S0002-8703(99)70282-6. Lin TM, Campbell LA, Rosenfeld ME, Kuo CC: Monocyte-endothelial cell coculture enhances infection of endothelial cells with Chlamydia pneumoniae. J Infect Dis. 2000, 181 (3): 1096-1100. 10.1086/315349. Quinn TC, Gaydos CA: In vitro infection and pathogenesis of Chlamydia pneumoniae in endovascular cells. Am Heart J. 1999, 138 (5 Pt 2): S507-511. 10.1016/S0002-8703(99)70287-5. Rupp J, Koch M, van Zandbergen G, Solbach W, Brandt E, Maass M: Transmission of Chlamydia pneumoniae infection from blood monocytes to vascular cells in a novel transendothelial migration model. FEMS Microbiol Lett. 2005, 242 (2): 203-208. 10.1016/j.femsle.2004.11.010. Moazed TC, Kuo CC, Grayston JT, Campbell LA: Evidence of systemic dissemination of Chlamydia pneumoniae via macrophages in the mouse. J Infect Dis. 1998, 177 (5): 1322-1325. 10.1086/515280. Contini C, Seraceni S, Cultrera R, Castellazzi M, Granieri E, Fainardi E: Chlamydophila pneumoniae Infection and Its Role in Neurological Disorders. Interdiscip Perspect Infect Dis. 2010, 2010: 273573- Di Pietro M, Filardo S, Cazzavillan S, Segala C, Bevilacqua P, Bonoldi E, D'Amore ES, Rassu M, Sessa R: Could past Chlamydial vascular infection promote the dissemination of Chlamydia pneumoniae to the brain?. J Biol Regul Homeost Agents. 2013, 27 (1): 155-164. Peters RP, van Agtmael MA, Danner SA, Savelkoul PH, Vandenbroucke-Grauls CM: New developments in the diagnosis of bloodstream infections. The Lancet infectious diseases. 2004, 4 (12): 751-760. 10.1016/S1473-3099(04)01205-8. Maass M, Harig U: Evaluation of culture conditions used for isolation of Chlamydia pneumoniae. Am J Clin Pathol. 1995, 103 (2): 141-148. Wiesinger-Mayr H, Vierlinger K, Pichler R, Kriegner A, Hirschl AM, Presterl E, Bodrossy L, Noehammer C: Identification of human pathogens isolated from blood using microarray hybridisation and signal pattern recognition. BMC microbiology. 2007, 7: 78-10.1186/1471-2180-7-78. Movasaghi Z, Rehman S, Rehman IS: Raman spectroscopy of biological tissues. Appl Spectrosc Rev. 2007, 42 (5): 493-541. 10.1080/05704920701551530. Rupp J, Pfleiderer L, Jugert C, Moeller S, Klinger M, Dalhoff K, Solbach W, Stenger S, Laskay T, van Zandbergen G: Chlamydia pneumoniae hides inside apoptotic neutrophils to silently infect and propagate in macrophages. PloS one. 2009, 4 (6): e6020-10.1371/journal.pone.0006020. Wolf K, Fischer E, Hackstadt T: Degradation of Chlamydia pneumoniae by peripheral blood monocytic cells. Infect Immun. 2005, 73 (8): 4560-4570. 10.1128/IAI.73.8.4560-4570.2005. Airenne S, Surcel HM, Alakarppa H, Laitinen K, Paavonen J, Saikku P, Laurila A: Chlamydia pneumoniae infection in human monocytes. Infect Immun. 1999, 67 (3): 1445-1449. Marangoni A, Bergamini C, Fato R, Cavallini C, Donati M, Nardini P, Foschi C, Cevenini R: Infection of human monocytes by Chlamydia pneumoniae and Chlamydia trachomatis: an in vitro comparative study. BMC research notes. 2014, 7: 230-10.1186/1756-0500-7-230. Szaszak M, Chang JC, Leng W, Rupp J, Ojcius DM, Kelley AM: Characterizing the intracellular distribution of metabolites in intact Chlamydia-infected cells by Raman and two-photon microscopy. Microbes and infection/Institut Pasteur. 2013, 15 (6–7): 461-469. 10.1016/j.micinf.2013.03.005. Heinemann M, Susa M, Simnacher U, Marre R, Essig A: Growth of Chlamydia pneumoniae induces cytokine production and expression of CD14 in a human monocytic cell line. Infect Immun. 1996, 64 (11): 4872-4875. Mamata Y, Hakki A, Newton C, Burdash N, Klein TW, Friedman H: Differential effects of Chlamydia pneumoniae infection on cytokine levels in human T lymphocyte- and monocyte-derived cell cultures. Int J Med Microbiol. 2007, 297 (2): 109-115. 10.1016/j.ijmm.2006.11.004. Abdul-Sater AA, Said-Sadier N, Padilla EV, Ojcius DM: Chlamydial infection of monocytes stimulates IL-1beta secretion through activation of the NLRP3 inflammasome. Microbes and infection/Institut Pasteur. 2010, 12 (8–9): 652-661. 10.1016/j.micinf.2010.04.008. Eitel J, Meixenberger K, van Laak C, Orlovski C, Hocke A, Schmeck B, Hippenstiel S, N'Guessan PD, Suttorp N, Opitz B: Rac1 regulates the NLRP3 inflammasome which mediates IL-1beta production in Chlamydophila pneumoniae infected human mononuclear cells. PloS one. 2012, 7 (1): e30379-10.1371/journal.pone.0030379. Netea MG, Nold-Petry CA, Nold MF, Joosten LA, Opitz B, van der Meer JH, van de Veerdonk FL, Ferwerda G, Heinhuis B, Devesa I: Differential requirement for the activation of the inflammasome for processing and release of IL-1beta in monocytes and macrophages. Blood. 2009, 113 (10): 2324-2335. 10.1182/blood-2008-03-146720. Trinchieri G: Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol. 2003, 3 (2): 133-146. 10.1038/nri1001. Netea MG, Selzman CH, Kullberg BJ, Galama JM, Weinberg A, Stalenhoef AF, Van der Meer JW, Dinarello CA: Acellular components of Chlamydia pneumoniae stimulate cytokine production in human blood mononuclear cells. Eur J Immunol. 2000, 30 (2): 541-549. 10.1002/1521-4141(200002)30:2<541::AID-IMMU541>3.0.CO;2-X. Roblin PM, Dumornay W, Hammerschlag MR: Use of HEp-2 cells for improved isolation and passage of Chlamydia pneumoniae. J Clin Microbiol. 1992, 30 (8): 1968-1971. Campbell LA, Kuo CC: Cultivation and laboratory maintenance of Chlamydia pneumoniae. Curr Protoc Microbiol. 2009, 11 (11B): 11- Wolf HM, Fischer MB, Puhringer H, Samstag A, Vogel E, Eibl MM: Human serum IgA downregulates the release of inflammatory cytokines (tumor necrosis factor-alpha, interleukin-6) in human monocytes. Blood. 1994, 83 (5): 1278-1288. Datta B, Njau F, Thalmann J, Haller H, Wagner AD: Differential infection outcome of Chlamydia trachomatis in human blood monocytes and monocyte-derived dendritic cells. BMC microbiology. 2014, 14: 209-10.1186/s12866-014-0209-3. Sommer K, Njau F, Wittkop U, Thalmann J, Bartling G, Wagner A, Klos A: Identification of high- and low-virulent strains of Chlamydia pneumoniae by their characterization in a mouse pneumonia model. FEMS immunology and medical microbiology. 2009, 55 (2): 206-214. 10.1111/j.1574-695X.2008.00503.x. Goldschmidt P, Rostane H, Sow M, Goepogui A, Batellier L, Chaumeil C: Detection by broad-range real-time PCR assay of Chlamydia species infecting human and animals. Br J Ophthalmol. 2006, 90 (11): 1425-1429. 10.1136/bjo.2006.096420. Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar , Buchner A, Lai T, Steppi S, Jobb G: ARB: a software environment for sequence data. Nucleic acids research. 2004, 32 (4): 1363-1371. 10.1093/nar/gkh293.