Human Gut Microbiome: Function Matters
Tóm tắt
Từ khóa
Tài liệu tham khảo
Karasov, 2011, Ecological physiology of diet and digestive systems, Annu. Rev. Physiol., 73, 69, 10.1146/annurev-physiol-012110-142152
LeBlanc, 2013, Bacteria as vitamin suppliers to their host: a gut microbiota perspective, Curr. Opin. Biotechnol., 24, 160, 10.1016/j.copbio.2012.08.005
Claus, 2016, The gut microbiota: a major player in the toxicity of environmental pollutants?, NPJ Biofilms Microbiomes, 2, 10.1038/npjbiofilms.2016.3
Kamada, 2013, Role of the gut microbiota in immunity and inflammatory disease, Nat. Rev. Immunol., 13, 321, 10.1038/nri3430
Abreu, 2010, Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function, Nat. Rev. Immunol., 10, 131, 10.1038/nri2707
Sommer, 2013, The gut microbiota – masters of host development and physiology, Nat. Rev. Microbiol., 11, 227, 10.1038/nrmicro2974
Hooper, 2012, Interactions between the microbiota and the immune system, Science, 336, 1268, 10.1126/science.1223490
Gilbert, 2016, Microbiome-wide association studies link dynamic microbial consortia to disease, Nature, 535, 94, 10.1038/nature18850
Verberkmoes, 2008, Shotgun metaproteomics of the human distal gut microbiota, ISME J., 3, 179, 10.1038/ismej.2008.108
Turnbaugh, 2010, Organismal, genetic, and transcriptional variation in the deeply sequenced gut microbiomes of identical twins, Proc. Natl. Acad. Sci. U. S. A., 107, 7503, 10.1073/pnas.1002355107
Gosalbes, 2011, Metatranscriptomic approach to analyze the functional human gut microbiota, PLoS One, 6, 10.1371/journal.pone.0017447
Erickson, 2012, Integrated metagenomics/metaproteomics reveals human host-microbiota signatures of Crohn’s disease, PLoS One, 7, 10.1371/journal.pone.0049138
Ferrer, 2012, Microbiota from the distal guts of lean and obese adolescents exhibit partial functional redundancy besides clear differences in community structure, Environ. Microbiol., 15, 211, 10.1111/j.1462-2920.2012.02845.x
Maurice, 2013, Xenobiotics shape the physiology and gene expression of the active human gut microbiome, Cell, 152, 39, 10.1016/j.cell.2012.10.052
Pérez-Cobas, 2013, Gut microbiota disturbance during antibiotic therapy: a multi-omic approach, Gut, 62, 1591, 10.1136/gutjnl-2012-303184
Franzosa, 2014, Relating the metatranscriptome and metagenome of the human gut, Proc. Natl. Acad. Sci. U. S. A., 111, E2329, 10.1073/pnas.1319284111
Xiong, 2015, Development of an enhanced metaproteomic approach for deepening the microbiome characterization of the human infant gut, J. Proteome Res., 14, 133, 10.1021/pr500936p
Heintz-Buschart, 2016, Integrated multi-omics of the human gut microbiome in a case study of familial type 1 diabetes, Nat. Microbiol., 2
McNulty, 2011, The impact of a consortium of fermented milk strains on the gut microbiome of gnotobiotic mice and monozygotic twins, Sci. Transl. Med., 3, 106ra106, 10.1126/scitranslmed.3002701
Proctor, 2016, The National Institutes of Health Human Microbiome Project, Seminars in Fetal & Neonatal Medicine, Semin. Fetal Neonatal. Med., 21, 368, 10.1016/j.siny.2016.05.002
Börnigen, 2013, Functional profiling of the gut microbiome in disease-associated inflammation, Genome Med., 5, 65, 10.1186/gm469
Cho, 2012, The human microbiome: at the interface of health and disease, Nat. Rev. Genet., 13, 260, 10.1038/nrg3182
Huttenhower, 2012, Structure, function and diversity of the healthy human microbiome, Nature, 486, 207, 10.1038/nature11234
Manor, 2017, Revised computational metagenomic processing uncovers hidden and biologically meaningful functional variation in the human microbiome, Microbiome, 5, 19, 10.1186/s40168-017-0231-4
Li, 2014, An integrated catalog of reference genes in the human gut microbiome, Nat. Biotechnol., 32, 834, 10.1038/nbt.2942
Schloissnig, 2013, Genomic variation landscape of the human gut microbiome, Nature, 493, 45, 10.1038/nature11711
Franzosa, 2015, Identifying personal microbiomes using metagenomic codes, Proc. Natl. Acad. Sci. U. S. A., 112, E2930, 10.1073/pnas.1423854112
van Iterson, 2013, General power and sample size calculations for high-dimensional genomic data, Stat. Appl. Genet. Mol. Biol., 12, 449, 10.1515/sagmb-2012-0046
Bi, 2016, Sample size calculation while controlling false discovery rate for differential expression analysis with RNA-sequencing experiments, BMC Bioinformatics, 17, 146, 10.1186/s12859-016-0994-9
Browne, 2016, Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation, Nature, 533, 543, 10.1038/nature17645
Zhang, 2017, Sampling strategies for three-dimensional spatial community structures in IBD microbiota research, Front. Cell. Infect. Microbiol., 7, 51, 10.3389/fcimb.2017.00051
Prestat, 2014, FOAM (Functional Ontology Assignments for Metagenomes): a Hidden Markov Model (HMM) database with environmental focus, Nucleic Acids Res., 42, 10.1093/nar/gku702
Powell, 2012, eggNOG v3.0: orthologous groups covering 1133 organisms at 41 different taxonomic ranges, Nucleic Acids Res., 40, D284, 10.1093/nar/gkr1060
Narayanasamy, 2016, IMP: a pipeline for reproducible reference-independent integrated metagenomic and metatranscriptomic analyses, Genome Biol., 17, 260, 10.1186/s13059-016-1116-8
Timmons, 2015, Multiple sources of bias confound functional enrichment analysis of global -omics data, Genome Biol., 16, 186, 10.1186/s13059-015-0761-7
Brito, 2016, Mobile genes in the human microbiome are structured from global to individual scales, Nature, 535, 435, 10.1038/nature18927
Zhang, 2016, Strain-level dissection of the contribution of the gut microbiome to human metabolic disease, Genome Med., 8, 41, 10.1186/s13073-016-0304-1
Antony-Babu, 2017, Multiple Streptomyces species with distinct secondary metabolomes have identical 16S rRNA gene sequences, Sci. Rep., 7, 10.1038/s41598-017-11363-1
McClean, 2015, Single gene locus changes perturb complex microbial communities as much as apex predator loss, Nat. Commun., 6, 10.1038/ncomms9235
Sommer, 2014, The human microbiome harbors a diverse reservoir of antibiotic resistance genes, Virulence, 1, 299, 10.4161/viru.1.4.12010
Dutilh, 2013, Screening metatranscriptomes for toxin genes as functional drivers of human colorectal cancer, Best Pract. Res. Clin. Gastroenterol., 27, 85, 10.1016/j.bpg.2013.03.008
Langille, 2013, Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences, Nat. Biotechnol., 31, 814, 10.1038/nbt.2676
Jun, 2015, PanFP: pangenome-based functional profiles for microbial communities, BMC Res. Notes, 8, 479, 10.1186/s13104-015-1462-8
Magnúsdóttir, 2017, Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota, Nat. Biotechnol., 35, 81, 10.1038/nbt.3703
Sunagawa, 2013, Metagenomic species profiling using universal phylogenetic marker genes, Nat. Methods, 10, 1196, 10.1038/nmeth.2693
Nielsen, 2014, Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes, Nat. Biotechnol., 32, 822, 10.1038/nbt.2939
Huerta-Cepas, 2016, eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences, Nucleic Acids Res., 44, D286, 10.1093/nar/gkv1248
Mende, 2017, proGenomes: a resource for consistent functional and taxonomic annotations of prokaryotic genomes, Nucleic Acids Res., 45, D529, 10.1093/nar/gkw989
Lakhdari, 2010, Functional metagenomics: a high throughput screening method to decipher microbiota-driven NF-κB modulation in the human gut, PLoS One, 5, 10.1371/annotation/9f1b7f00-bcc0-4442-9775-491ebdafc7bc
Dobrijevic, 2013, High-throughput system for the presentation of secreted and surface-exposed proteins from Gram-positive bacteria in functional metagenomics studies, PLoS One, 8, 10.1371/journal.pone.0065956
Lam, 2015, Current and future resources for functional metagenomics, Front. Microbiol., 6, 149, 10.3389/fmicb.2015.01196
Colin, 2015, Ultrahigh-throughput discovery of promiscuous enzymes by picodroplet functional metagenomics, Nat. Commun., 6, 10.1038/ncomms10008
Lagier, 2016, Culture of previously uncultured members of the human gut microbiota by culturomics, Nat. Microbiol., 1, 10.1038/nmicrobiol.2016.203
Berdy, 2017, In situ cultivation of previously uncultivable microorganisms using the ichip, Nat. Protoc., 12, 2232, 10.1038/nprot.2017.074
Cadotte, 2011, Beyond species: functional diversity and the maintenance of ecological processes and services, J. Appl. Ecol., 48, 1079, 10.1111/j.1365-2664.2011.02048.x
Walker, 1995, Conserving biological diversity through ecosystem resilience, Conserv. Biol., 9, 747, 10.1046/j.1523-1739.1995.09040747.x
Naeem, 1998, Species redundancy and ecosystem reliability, Conserv. Biol., 12, 39, 10.1046/j.1523-1739.1998.96379.x
Lozupone, 2012, Diversity, stability and resilience of the human gut microbiota, Nature, 489, 220, 10.1038/nature11550
Allison, 2008, Colloquium paper: resistance, resilience, and redundancy in microbial communities, Proc. Natl. Acad. Sci. U. S. A., 105, 11512, 10.1073/pnas.0801925105
Delgado-Baquerizo, 2016, Microbial diversity drives multifunctionality in terrestrial ecosystems, Nat. Commun., 7, 10541, 10.1038/ncomms10541
Blount, 2012, Genomic analysis of a key innovation in an experimental Escherichia coli population, Nature, 488, 513, 10.1038/nature11514
Louwen, 2012, A novel link between Campylobacter jejuni bacteriophage defence, virulence and Guillain–Barré syndrome, Eur. J. Clin. Microbiol. Infect. Dis., 32, 207, 10.1007/s10096-012-1733-4
Sahl, 2015, Genomic characterization of Burkholderia pseudomallei isolates selected for medical countermeasures testing: comparative genomics associated with differential virulence, PLoS One, 10, 10.1371/journal.pone.0121052
Flores, 2014, Temporal variability is a personalized feature of the human microbiome, Genome Biol., 15, 531, 10.1186/s13059-014-0531-y
de Meij, 2016, Composition and stability of intestinal microbiota of healthy children within a Dutch population, FASEB J., 30, 1512, 10.1096/fj.15-278622
Coyte, 2015, The ecology of the microbiome: Networks, competition, and stability, Science, 350, 663, 10.1126/science.aad2602
Erkus, O. et al. (2013) Multifactorial diversity sustains microbial community stability. 7, 2126–2136
Carrara, 2015, Experimental evidence for strong stabilizing forces at high functional diversity of aquatic microbial communities, Ecology, 96, 1340, 10.1890/14-1324.1
Le Chatelier, 2013, Richness of human gut microbiome correlates with metabolic markers, Nature, 500, 541, 10.1038/nature12506
Roager, 2016, Colonic transit time is related to bacterial metabolism and mucosal turnover in the gut, Nat. Microbiol., 1, 10.1038/nmicrobiol.2016.93
Tap, 2015, Gut microbiota richness promotes its stability upon increased dietary fibre intake in healthy adults, Environ. Microbiol., 17, 4954, 10.1111/1462-2920.13006
Moya, 2016, Functional redundancy-induced stability of gut microbiota subjected to disturbance, Trends Microbiol., 24, 402, 10.1016/j.tim.2016.02.002
Sommer, 2017, The resilience of the intestinal microbiota influences health and disease, Nat. Rev. Microbiol., 15, 630, 10.1038/nrmicro.2017.58
Jiang, 2016, Metatranscriptomic analysis of diverse microbial communities reveals core metabolic pathways and microbiome-specific functionality, Microbiome, 4, 2, 10.1186/s40168-015-0146-x
Plichta, 2016, Transcriptional interactions suggest niche segregation among microorganisms in the human gut, Nat. Microbiol., 1, 10.1038/nmicrobiol.2016.152
Manor, 2017, Systematic characterization and analysis of the taxonomic drivers of functional shifts in the human microbiome, Cell Host Microbe, 21, 254, 10.1016/j.chom.2016.12.014
Luo, 2015, Constrains identifies microbial strains in metagenomic datasets, Nat. Biotechnol., 33, 1045, 10.1038/nbt.3319
Nayfach, 2016, An integrated metagenomics pipeline for strain profiling reveals novel patterns of bacterial transmission and biogeography, Genome Res., 26, 1612, 10.1101/gr.201863.115
Scholz, 2016, Strain-level microbial epidemiology and population genomics from shotgun metagenomics, Nat. Methods, 13, 435, 10.1038/nmeth.3802
Truong, 2017, Microbial strain-level population structure and genetic diversity from metagenomes, Genome Res., 27, 626, 10.1101/gr.216242.116
Costea, 2017, metaSNV: A tool for metagenomic strain level analysis, PLoS One, 12, 10.1371/journal.pone.0182392
Quince, 2017, DESMAN: a new tool for de novo extraction of strains from metagenomes, Genome Biol., 18, 181, 10.1186/s13059-017-1309-9
Fodor, 2012, The ‘most wanted’ taxa from the human microbiome for whole genome sequencing, PLoS One, 7, 10.1371/journal.pone.0041294
Almeida, 2016, Capturing the most wanted taxa through cross-sample correlations, ISME J., 10, 2459, 10.1038/ismej.2016.35
Mayers, 2017, Quantitative metaproteomics and activity-based probe enrichment reveals significant alterations in protein expression from a mouse model of inflammatory bowel disease, J. Proteome Res., 16, 1014, 10.1021/acs.jproteome.6b00938
Prosser, 2014, Metabolomic strategies for the identification of new enzyme functions and metabolic pathways, EMBO Rep., 15, 657, 10.15252/embr.201338283
Nayfach, 2015, MetaQuery: a web server for rapid annotation and quantitative analysis of specific genes in the human gut microbiome, Bioinformatics, 31, 3368, 10.1093/bioinformatics/btv382
Caspi, 2013, The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases, Nucleic Acids Res., 42, D459, 10.1093/nar/gkt1103
Korem, 2015, Growth dynamics of gut microbiota in health and disease inferred from single metagenomic samples, Science, 349, 1101, 10.1126/science.aac4812
Brown, 2016, Measurement of bacterial replication rates in microbial communities, Nat. Biotechnol., 34, 1256, 10.1038/nbt.3704
Nawrocki, 2014, Computational identification of functional RNA homologs in metagenomic data, RNA Biol., 10, 1170, 10.4161/rna.25038
Bao, 2015, Strand-specific community RNA-seq reveals prevalent and dynamic antisense transcription in human gut microbiota, Front. Microbiol., 6, 94, 10.3389/fmicb.2015.00896
Kato, 2014, Multiple omics uncovers host-gut microbial mutualism during prebiotic fructooligosaccharide supplementation, DNA Res., 21, 469, 10.1093/dnares/dsu013
Palm, 2014, Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease, Cell, 158, 1000, 10.1016/j.cell.2014.08.006
Kolmeder, 2015, Colonic metaproteomic signatures of active bacteria and the host in obesity, Proteomics, 15, 3544, 10.1002/pmic.201500049
Debyser, 2016, Faecal proteomics: A tool to investigate dysbiosis and inflammation in patients with cystic fibrosis, J. Cyst. Fibros., 15, 242, 10.1016/j.jcf.2015.08.003
Liu, 2016, The host shapes the gut microbiota via fecal microRNA, CHOM, 19, 32
Pedersen, 2016, Human gut microbes impact host serum metabolome and insulin sensitivity, Nature, 535, 376, 10.1038/nature18646
Okai, 2016, High-affinity monoclonal IgA regulates gut microbiota and prevents colitis in mice, Nat. Microbiol., 1, 10.1038/nmicrobiol.2016.103
Turpin, 2016, Association of host genome with intestinal microbial composition in a large healthy cohort, Nat. Genet., 48, 1413, 10.1038/ng.3693
Bonder, 2016, The effect of host genetics on the gut microbiome, Nat. Genet., 48, 1407, 10.1038/ng.3663
Wang, 2016, Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota, Nat. Genet., 48, 1396, 10.1038/ng.3695
Kim, 2016, Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip, Proc. Natl. Acad. Sci. U. S. A., 113, E7, 10.1073/pnas.1522193112
Shah, 2016, A microfluidics-based in vitro model of the gastrointestinal human-microbe interface, Nat. Commun., 7, 10.1038/ncomms11535
Fritz, 2013, From meta-omics to causality: experimental models for human microbiome research, Microbiome, 1, 14, 10.1186/2049-2618-1-14
Nguyen, 2015, How informative is the mouse for human gut microbiota research?, Dis. Models Mechan., 8, 1, 10.1242/dmm.017400
Arrieta, 2016, Human microbiota-associated mice: a model with challenges, Cell Host Microbe, 19, 575, 10.1016/j.chom.2016.04.014
Furusawa, 2013, Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells, Nature, 504, 446, 10.1038/nature12721
Atarashi, 2013, Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota, Nature, 500, 232, 10.1038/nature12331
Turroni, 2016, Deciphering bifidobacterial-mediated metabolic interactions and their impact on gut microbiota by a multi-omics approach, ISME J., 10, 1656, 10.1038/ismej.2015.236
David, 2013, Diet rapidly and reproducibly alters the human gut microbiome, Nature, 505, 559, 10.1038/nature12820
O’Keefe, 2015, Fat, fibre and cancer risk in African Americans and rural Africans, Nat. Commun., 6, 10.1038/ncomms7342
van Nood, 2013, Duodenal infusion of donor feces for recurrent Clostridium difficile, N. Engl. J. Med., 368, 407, 10.1056/NEJMoa1205037
Li, 2016, Durable coexistence of donor and recipient strains after fecal microbiota transplantation, Science, 352, 586, 10.1126/science.aad8852
Ott, 2017, Efficacy of sterile fecal filtrate transfer for treating patients with Clostridium difficile infection, Gastroenterology, 152, 10.1053/j.gastro.2016.11.010
Petrof, 2013, Stool substitute transplant therapy for the eradication of Clostridium difficile infection: ‘RePOOPulating’ the gut, Microbiome, 1, 3, 10.1186/2049-2618-1-3
Tanca, 2016, The impact of sequence database choice on metaproteomic results in gut microbiota studies, Microbiome, 4, 51, 10.1186/s40168-016-0196-8
Tang, 2016, A graph-centric approach for metagenome-guided peptide and protein identification in metaproteomics, PLoS Comput. Biol., 12, 10.1371/journal.pcbi.1005224
Gillet, 2012, Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis, Mol. Cell. Proteomics, 11, 10.1074/mcp.O111.016717