Human Endogenous Retroviruses in Neurological Diseases

Trends in Molecular Medicine - Tập 24 - Trang 379-394 - 2018
Patrick Küry1, Avindra Nath2, Alain Créange3, Antonina Dolei4, Patrice Marche5,6, Julian Gold7,8, Gavin Giovannoni7, Hans-Peter Hartung9, Hervé Perron10,11
1Department of Neurology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
2Section of infections of the Nervous System, National Institute of Neurological Diseases and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
3Service de Neurologie, Groupe Hospitalier Henri Mondor, Assistance Publique Hopitaux de Paris (APHP), Université Paris Est, Créteil, France
4Department of Virology, University of Sassari, Sassari, Italy
5Institute for Advanced Biosciences (IAB), University of Grenoble-Alpes, La Tronche, France
6Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1209, La Tronche, France
7Centre for Neuroscience and Trauma, Blizard Institute, Queen Mary University, London, UK
8The Albion Centre, Prince of Wales Hospital, Sydney, Australia
9Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
10Geneuro, Plan les Ouates, Geneva, Switzerland
11University of Lyon, Lyon, France

Tài liệu tham khảo

Hayes, 2013, Pathological and evolutionary implications of retroviruses as mobile genetic elements, Genes, 4, 573, 10.3390/genes4040573 Babatz, 2013, Functional impact of the human mobilome, Curr. Opin. Genet. Dev., 23, 264, 10.1016/j.gde.2013.02.007 Pace, 2007, The evolutionary history of human DNA transposons: evidence for intense activity in the primate lineage, Genome Res., 17, 422, 10.1101/gr.5826307 Katzourakis, 2010, Endogenous viral elements in animal genomes, PLoS Genet., 6, 10.1371/journal.pgen.1001191 Feschotte, 2012, Endogenous viruses: insights into viral evolution and impact on host biology, Nat. Rev. Genet., 13, 283, 10.1038/nrg3199 Chuong, 2016, Regulatory evolution of innate immunity through co-option of endogenous retroviruses, Science, 351, 1083, 10.1126/science.aad5497 Bonnaud, 2004, Evidence of selection on the domesticated ERVWE1 env retroviral element involved in placentation, Mol. Biol. Evol., 21, 1895, 10.1093/molbev/msh206 Engel, 2010, The enemy within: dormant retroviruses awaken, Nat. Med., 16, 517, 10.1038/nm0510-517 Volkman, 2014, The enemy within: endogenous retroelements and autoimmune disease, Nat. Immunol., 15, 415, 10.1038/ni.2872 Perron, 2012, Molecular characteristics of human endogenous retrovirus type-W in schizophrenia and bipolar disorder, Transl. Psychiatry, 2, e201, 10.1038/tp.2012.125 Levet, 2017, An ancestral retroviral protein identified as a therapeutic target in type-1 diabetes, JCI Insight, 2, 10.1172/jci.insight.94387 Criscione, 2014, Transcriptional landscape of repetitive elements in normal and cancer human cells, BMC Genomics, 15, 583, 10.1186/1471-2164-15-583 Liang, 2012, Database documentation of retrotransposon insertion polymorphisms, Front. Biosci., 4, 1542, 10.2741/e479 Hedges, 2011, Restless genomes: humans as a model organism for understanding host–retrotransposable element dynamics, Adv. Genet., 73, 219, 10.1016/B978-0-12-380860-8.00006-9 Medina, 2017, DNA sequences from mobile genetic elements, a hidden half of the human genome, Med. Sci., 33, 151 Hancks, 2016, Roles for retrotransposon insertions in human disease, Mob. DNA, 7, 9, 10.1186/s13100-016-0065-9 Nishibuchi, 2017, The molecular basis of the organization of repetitive DNA-containing constitutive heterochromatin in mammals, Chromosome Res., 25, 77, 10.1007/s10577-016-9547-3 Campos-Sanchez, 2014, Genomic landscape of human, bat, and ex vivo DNA transposon integrations, Mol. Biol. Evol., 31, 1816, 10.1093/molbev/msu138 Belshaw, 2004, Long-term reinfection of the human genome by endogenous retroviruses, Proc. Natl. Acad. Sci. U. S. A., 101, 4894, 10.1073/pnas.0307800101 van de Lagemaat, 2006, Multiple effects govern endogenous retrovirus survival patterns in human gene introns, Genome Biol., 7, R86, 10.1186/gb-2006-7-9-r86 Serra, 2003, In vitro modulation of the multiple sclerosis (MS)-associated retrovirus by cytokines: implications for MS pathogenesis, J. Neurovirol., 9, 637 Uleri, 2014, HIV Tat acts on endogenous retroviruses of the W family and this occurs via Toll-like receptor 4: inference for neuroAIDS, AIDS, 28, 2659, 10.1097/QAD.0000000000000477 Petersen, 2009, Effects of interferon-beta therapy on innate and adaptive immune responses to the human endogenous retroviruses HERV-H and HERV-W, cytokine production, and the lectin complement activation pathway in multiple sclerosis, J. Neuroimmunol., 215, 108, 10.1016/j.jneuroim.2009.08.015 Mameli, 2008, Inhibition of multiple-sclerosis-associated retrovirus as biomarker of interferon therapy, J. Neurovirol., 14, 73, 10.1080/13550280701801107 Perron, 1993, Herpes simplex virus ICP0 and ICP4 immediate early proteins strongly enhance expression of a retrovirus harboured by a leptomeningeal cell line from a patient with multiple sclerosis, J. Gen. Virol., 74, 65, 10.1099/0022-1317-74-1-65 Brudek, 2007, Activation of endogenous retrovirus reverse transcriptase in multiple sclerosis patient lymphocytes by inactivated HSV-1, HHV-6 and VZV, J. Neuroimmunol., 187, 147, 10.1016/j.jneuroim.2007.04.003 Ruprecht, 2006, Regulation of human endogenous retrovirus W protein expression by herpes simplex virus type 1: implications for multiple sclerosis, J. Neurovirol., 12, 65, 10.1080/13550280600614973 Bergallo, 2015, CMV induces HERV-K and HERV-W expression in kidney transplant recipients, J. Clin. Virol., 68, 28, 10.1016/j.jcv.2015.04.018 Tai, 2009, HHV-6A infection induces expression of HERV-K18–encoded superantigen, J. Clin. Virol., 46, 47, 10.1016/j.jcv.2009.05.019 Sutkowski, 2001, Epstein–Barr virus transactivates the human endogenous retrovirus HERV-K18 that encodes a superantigen, Immunity, 15, 579, 10.1016/S1074-7613(01)00210-2 Mameli, 2012, Expression and activation by Epstein–Barr virus of human endogenous retroviruses-W in blood cells and astrocytes: inference for multiple sclerosis, PLoS One, 7, 10.1371/journal.pone.0044991 Leibovitch, 2018, Viruses in chronic progressive neurologic disease, Mult. Scler., 24, 48, 10.1177/1352458517737392 Morahan, 1989, Molecular localization of abortive infection of resident peritoneal macrophages by herpes simplex virus type 1, J. Virol., 63, 2300, 10.1128/jvi.63.5.2300-2307.1989 Hammerschmidt, 2015, The epigenetic life cycle of Epstein–Barr virus, Curr. Top. Microbiol. Immunol., 390, 103 Ascherio, 2010, Epstein–Barr virus infection and multiple sclerosis: a review, J. Neuroimmune Pharmacol., 5, 271, 10.1007/s11481-010-9201-3 Mameli, 2013, Activation of MSRV-type endogenous retroviruses during infectious mononucleosis and Epstein–Barr virus latency: the missing link with multiple sclerosis?, PLoS One, 8, 10.1371/journal.pone.0078474 Toufaily, 2011, Activation of LTRs from different human endogenous retrovirus (HERV) families by the HTLV-1 tax protein and T-cell activators, Viruses, 3, 2146, 10.3390/v3112146 Perron, 2001, Multiple sclerosis retrovirus particles and recombinant envelope trigger an abnormal immune response in vitro, by inducing polyclonal Vbeta16 T-lymphocyte activation, Virology, 287, 321, 10.1006/viro.2001.1045 Perron, 2013, Human endogenous retrovirus protein activates innate immunity and promotes experimental allergic encephalomyelitis in mice, PLoS One, 8, 10.1371/journal.pone.0080128 Dendrou, 2015, Immunopathology of multiple sclerosis, Nat. Rev. Immunol., 15, 545, 10.1038/nri3871 Petereit, 2005, Expansion of antibody reactivity in the cerebrospinal fluid of multiple sclerosis patients – follow-up and clinical implications, Cerebrospinal Fluid Res., 2, 3, 10.1186/1743-8454-2-3 Mahad, 2015, Pathological mechanisms in progressive multiple sclerosis, Lancet Neurol., 14, 183, 10.1016/S1474-4422(14)70256-X Rocha, 1995, Anergy and exhaustion are independent mechanisms of peripheral T cell tolerance, J. Exp. Med., 181, 993, 10.1084/jem.181.3.993 Illingworth, 2013, Chronic exposure to Plasmodium falciparum is associated with phenotypic evidence of B and T cell exhaustion, J. Immunol., 190, 1038, 10.4049/jimmunol.1202438 Hollenbach, 2015, The immunogenetics of multiple sclerosis: a comprehensive review, J. Autoimmun., 64, 13, 10.1016/j.jaut.2015.06.010 Belbasis, 2015, Environmental risk factors and multiple sclerosis: an umbrella review of systematic reviews and meta-analyses, Lancet Neurol., 14, 263, 10.1016/S1474-4422(14)70267-4 Hedstrom, 2016, Environmental factors and their interactions with risk genotypes in MS susceptibility, Curr. Opin. Neurol., 29, 293, 10.1097/WCO.0000000000000329 Renz, 2011, Gene–environment interactions in chronic inflammatory disease, Nat. Immunol., 12, 273, 10.1038/ni0411-273 McKay, 2015, Risk factors associated with the onset of relapsing-remitting and primary progressive multiple sclerosis: a systematic review, BioMed Res. Int., 2015, 10.1155/2015/817238 Nissen, 2012, No additional copies of HERV-Fc1 in the germ line of multiple sclerosis patients, Virol. J., 9, 188, 10.1186/1743-422X-9-188 Hansen, 2011, Genetic association of multiple sclerosis with the marker rs391745 near the endogenous retroviral locus HERV-Fc1: analysis of disease subtypes, PLoS One, 6, 10.1371/journal.pone.0026438 Muradrasoli, 2006, Development of real-time PCRs for detection and quantitation of human MMTV-like (HML) sequences HML expression in human tissues, J. Virol. Methods, 136, 83, 10.1016/j.jviromet.2006.04.005 Christensen, 2000, Molecular characterization of HERV-H variants associated with multiple sclerosis, Acta Neurol. Scand., 101, 229, 10.1034/j.1600-0404.2000.101004229.x Brudek, 2009, B cells and monocytes from patients with active multiple sclerosis exhibit increased surface expression of both HERV-H Env and HERV-W Env, accompanied by increased seroreactivity, Retrovirology, 6, 104, 10.1186/1742-4690-6-104 Christensen, 2016, Human endogenous retroviruses in neurologic disease, APMIS, 124, 116, 10.1111/apm.12486 Morandi, 2017, The association between human endogenous retroviruses and multiple sclerosis: a systematic review and meta-analysis, PLoS One, 12, 10.1371/journal.pone.0172415 Perron, 1989, Leptomeningeal cell line from multiple sclerosis with reverse transcriptase activity and viral particles, Res. Virol., 140, 551, 10.1016/S0923-2516(89)80141-4 Perron, 1991, Isolation of retrovirus from patients with multiple sclerosis, Lancet, 337, 862, 10.1016/0140-6736(91)92579-Q Komurian-Pradel, 1999, Molecular cloning and characterization of MSRV-related sequences associated with retrovirus-like particles, Virology, 260, 1, 10.1006/viro.1999.9792 Perron, 1997, Molecular identification of a novel retrovirus repeatedly isolated from patients with multiple sclerosis. The Collaborative Research Group on Multiple Sclerosis, Proc. Natl. Acad. Sci. U. S. A., 94, 7583, 10.1073/pnas.94.14.7583 Tuke, 1997, Development of a pan-retrovirus detection system for multiple sclerosis studies, Acta Neurol. Scand. Suppl., 169, 16, 10.1111/j.1600-0404.1997.tb08145.x Blond, 1999, Molecular characterization and placental expression of HERV-W, a new human endogenous retrovirus family, J. Virol., 73, 1175, 10.1128/JVI.73.2.1175-1185.1999 Mameli, 2007, Brains and peripheral blood mononuclear cells of multiple sclerosis (MS) patients hyperexpress MS-associated retrovirus/HERV-W endogenous retrovirus, but not human herpesvirus 6, J. Gen. Virol., 88, 264, 10.1099/vir.0.81890-0 Perron, 2012, Human endogenous retrovirus type W envelope expression in blood and brain cells provides new insights into multiple sclerosis disease, Mult. Scler., 18, 1721, 10.1177/1352458512441381 Sotgiu, 2010, Multiple sclerosis-associated retrovirus and progressive disability of multiple sclerosis, Mult. Scler., 16, 1248, 10.1177/1352458510376956 Garson, 1998, Detection of virion-associated MSRV-RNA in serum of patients with multiple sclerosis, Lancet, 351, 33, 10.1016/S0140-6736(98)24001-3 Garcia-Montojo, 2013, The DNA copy number of human endogenous retrovirus-W (MSRV-type) is increased in multiple sclerosis patients and is influenced by gender and disease severity, PLoS One, 8, 10.1371/journal.pone.0053623 Kremer, 2013, Human endogenous retrovirus type W envelope protein inhibits oligodendroglial precursor cell differentiation, Ann. Neurol., 74, 721, 10.1002/ana.23970 van Horssen, 2016, Human endogenous retrovirus W in brain lesions: rationale for targeted therapy in multiple sclerosis, Mult. Scler. Relat. Disord., 8, 11, 10.1016/j.msard.2016.04.006 Rolland, 2006, The envelope protein of a human endogenous retrovirus-W family activates innate immunity through CD14/TLR4 and promotes Th1-like responses, J. Immunol., 176, 7636, 10.4049/jimmunol.176.12.7636 Saresella, 2009, Multiple sclerosis-associated retroviral agent (MSRV)-stimulated cytokine production in patients with relapsing-remitting multiple sclerosis, Mult. Scler., 15, 443, 10.1177/1352458508100840 Kremer, 2015, The neutralizing antibody GNbAC1 abrogates HERV-W envelope protein-mediated oligodendroglial maturation blockade, Mult. Scler., 21, 1200, 10.1177/1352458514560926 Curtin, 2015, Preclinical and early clinical development of GNbAC1, a humanized IgG4 monoclonal antibody targeting endogenous retroviral MSRV-Env protein, MAbs, 7, 265, 10.4161/19420862.2014.985021 Duperray, 2015, Inflammatory response of endothelial cells to a human endogenous retrovirus associated with multiple sclerosis is mediated by TLR4, Int. Immunol., 27, 545, 10.1093/intimm/dxv025 Curtin, 2016, Serum pharmacokinetics and cerebrospinal fluid concentration analysis of the new IgG4 monoclonal antibody GNbAC1 to treat multiple sclerosis: a Phase 1 study, MAbs, 8, 854, 10.1080/19420862.2016.1168956 Derfuss, 2015, A phase IIa randomized clinical study testing GNbAC1, a humanized monoclonal antibody against the envelope protein of multiple sclerosis associated endogenous retrovirus in multiple sclerosis patients – a twelve month follow-up, J. Neuroimmunol., 285, 68, 10.1016/j.jneuroim.2015.05.019 Curtin, 2012, GNbAC1, a humanized monoclonal antibody against the envelope protein of multiple sclerosis-associated endogenous retrovirus: a first-in-humans randomized clinical study, Clin. Ther., 34, 2268, 10.1016/j.clinthera.2012.11.006 Curtin, 2016, A placebo randomized controlled study to test the efficacy and safety of GNbAC1, a monoclonal antibody for the treatment of multiple sclerosis – rationale and design, MSARD, 9, 95 Maruszak, 2011, Could antiretroviral drugs be effective in multiple sclerosis? A case report, Eur. J. Neurol., 18, e110, 10.1111/j.1468-1331.2011.03430.x Faucard, 2016, Human endogenous retrovirus and neuroinflammation in chronic inflammatory demyelinating polyradiculoneuropathy, EBioMedicine, 6, 190, 10.1016/j.ebiom.2016.03.001 Viola, 1975, RNA-instructed DNA polymerase activity in a cytoplasmic particulate fraction in brains from Guamanian patients, J. Exp. Med., 142, 483, 10.1084/jem.142.2.483 Andrews, 2000, Detection of reverse transcriptase activity in the serum of patients with motor neurone disease, J. Med. Virol., 61, 527, 10.1002/1096-9071(200008)61:4<527::AID-JMV17>3.0.CO;2-A McCormick, 2008, Quantification of reverse transcriptase in ALS and elimination of a novel retroviral candidate, Neurology, 70, 278, 10.1212/01.wnl.0000297552.13219.b4 Steele, 2005, Detection of serum reverse transcriptase activity in patients with ALS and unaffected blood relatives, Neurology, 64, 454, 10.1212/01.WNL.0000150899.76130.71 Kim, 2010, No evidence of HIV pol gene in spinal cord tissues in sporadic ALS by real-time RT-PCR, Amyotroph. Lateral Scler., 11, 91, 10.3109/17482960902835988 Douville, 2011, Identification of active loci of a human endogenous retrovirus in neurons of patients with amyotrophic lateral sclerosis, Ann. Neurol., 69, 141, 10.1002/ana.22149 Li, 2015, Human endogenous retrovirus-K contributes to motor neuron disease, Sci. Transl. Med., 7, 10.1126/scitranslmed.aac8201 Belshaw, 2005, Genomewide screening reveals high levels of insertional polymorphism in the human endogenous retrovirus family HERV-K(HML2): implications for present-day activity, J. Virol., 79, 12507, 10.1128/JVI.79.19.12507-12514.2005 Subramanian, 2011, Identification, characterization, and comparative genomic distribution of the HERV-K (HML-2) group of human endogenous retroviruses, Retrovirology, 8, 90, 10.1186/1742-4690-8-90 Marchi, 2014, Unfixed endogenous retroviral insertions in the human population, J. Virol., 88, 9529, 10.1128/JVI.00919-14 Wildschutte, 2016, Discovery of unfixed endogenous retrovirus insertions in diverse human populations, Proc. Natl. Acad. Sci. U. S. A., 113, E2326, 10.1073/pnas.1602336113 Lee, 2007, Reconstitution of an infectious human endogenous retrovirus, PLoS Pathog., 3, e10, 10.1371/journal.ppat.0030010 Goke, 2015, Dynamic transcription of distinct classes of endogenous retroviral elements marks specific populations of early human embryonic cells, Cell Stem Cell, 16, 135, 10.1016/j.stem.2015.01.005 Igaz, 2011, Dysregulation of the ALS-associated gene TDP-43 leads to neuronal death and degeneration in mice, J. Clin. Invest., 121, 726, 10.1172/JCI44867 Tyagi, 2017, Inhibition of human endogenous retrovirus-K replication by antiretroviral drugs, Retrovirology, 14, 21, 10.1186/s12977-017-0347-4 Scelsa, 2005, A pilot, double-blind, placebo-controlled trial of indinavir in patients with ALS, Neurology, 64, 1298, 10.1212/01.WNL.0000156913.24701.72 Alfahad, 2013, Retroviruses and amyotrophic lateral sclerosis, Antiviral Res., 99, 180, 10.1016/j.antiviral.2013.05.006 Bowen, 2016, HIV-associated motor neuron disease: HERV-K activation and response to antiretroviral therapy, Neurology, 87, 1756, 10.1212/WNL.0000000000003258 Gonzalez-Hernandez, 2014, Regulation of the human endogenous retrovirus K (HML-2) transcriptome by the HIV-1 Tat protein, J. Virol., 88, 8924, 10.1128/JVI.00556-14 Perron, 2009, Endogenous retroviral genes, herpesviruses and gender in multiple sclerosis, J. Neurol. Sci., 286, 65, 10.1016/j.jns.2009.04.034 Makalowski, 2001, The human genome structure and organization, Acta Biochim. Pol., 48, 587, 10.18388/abp.2001_3893 Grover, 2005, ALU-ring elements in the primate genomes, Genetica, 124, 273, 10.1007/s10709-005-3086-8 Kulski, 1999, The P5 multicopy gene family in the MHC is related in sequence to human endogenous retroviruses HERV-L and HERV-16, Immunogenetics, 49, 404, 10.1007/s002510050513