Human Cortical Pyramidal Neurons: From Spines to Spikes via Models

Guy Eyal1, Matthijs B. Verhoog2,3, Guilherme Testa-Silva3, Yair Deitcher4, Ruth Benavides‐Piccione5, Javier DeFelipe5, Christiaan P. J. de Kock3, Huibert D. Mansvelder3, Idan Segev1,4
1Department of Neurobiology, Hebrew University of Jerusalem, Jerusalem, Israel
2Department of Human Biology, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
3Department of Integrative Neurophysiology, Centre for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, Netherlands
4Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
5Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal (CSIC), and Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Madrid, Spain

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alonso-Nanclares, 2008, Gender differences in human cortical synaptic density, Proc. Natl. Acad. Sci. U.S.A., 105, 14615, 10.1073/pnas.0803652105

Amunts, 2016, The human brain project: creating a European research infrastructure to decode the human brain, Neuron, 92, 574, 10.1016/j.neuron.2016.10.046

Angelino, 2007, Excitability constraints on voltage-gated sodium channels, PLoS Comput. Biol., 3, e177, 10.1371/journal.pcbi.0030177

Araya, 2014, Activity-dependent dendritic spine neck changes are correlated with synaptic strength, Proc. Natl. Acad. Sci. U.S.A., 111, E2895, 10.1073/pnas.1321869111

Arellano, 2007, Non-synaptic dendritic spines in neocortex, Neuroscience, 145, 464, 10.1016/j.neuroscience.2006.12.015

Avoli, 2005, Cellular and molecular mechanisms of epilepsy in the human brain, Prog. Neurobiol., 77, 166, 10.1016/j.pneurobio.2005.09.006

Ballesteros-Yáñez, 2006, Density and morphology of dendritic spines in mouse neocortex, Neuroscience, 138, 403, 10.1016/j.neuroscience.2005.11.038

Benavides-Piccione, 2005, Catecholaminergic innervation of pyramidal neurons in the human temporal cortex, Cereb. Cortex, 15, 1584, 10.1093/cercor/bhi036

Benavides-Piccione, 2002, Cortical area and species differences in dendritic spine morphology, J. Neurocytol., 31, 337, 10.1023/A:1024134312173

Benavides-Piccione, 2013, Age-based comparison of human dendritic spine structure using complete three-dimensional reconstructions, Cereb. Cortex, 23, 1798, 10.1093/cercor/bhs154

Blazquez-Llorca, 2013, FIB/SEM technology and Alzheimer's disease: three-dimensional analysis of human cortical synapses, J. Alzheimers Dis., 34, 995, 10.3233/JAD-122038

Bono, 2017, Modelling plasticity in dendrites: from single cells to networks, Curr. Opin. Neurobiol., 46, 136, 10.1016/j.conb.2017.08.013

Brent, 1976, A new algorithm for minimizing a function of several variables without calculating derivatives, Algorithms for Minimization without Derivatives, 200

Carnevale, 2006, The NEURON Book, 10.1017/CBO9780511541612

Cartailler, 2018, Deconvolution of voltage sensor time series and electro-diffusion modeling reveal the role of spine geometry in controlling synaptic strength, Neuron, 97, 1126, 10.1016/j.neuron.2018.01.034

DeFelipe, 2015, The anatomical problem posed by brain complexity and size: a potential solution, Front. Neuroanat., 9, 104, 10.3389/fnana.2015.00104

DeFelipe, 2002, Microstructure of the neocortex: comparative aspects, J. Neurocytol., 31, 299, 10.1023/A:1024130211265

DeFelipe, 1992, The pyramidal neuron of the cerebral cortex: morphological and chemical characteristics of the synaptic inputs, Prog Neurobiol., 39, 563, 10.1016/0301-0082(92)90015-7

Deitcher, 2017, Comprehensive morpho-electrotonic analysis shows 2 distinct classes of L2 and L3 pyramidal neurons in human temporal cortex, Cereb. Cortex, 27, 5398, 10.1093/cercor/bhx226

Del Río, 1994, A study of SMI 32-stained pyramidal cells, parvalbumin-immunoreactive chandelier cells, and presumptive thalamocortical axons in the human temproal neocortex, J. Comp. Neurol., 342, 389, 10.1002/cne.903420307

Destexhe, 2003, The high-conductance state of neocortical neurons in vivo, Nat. Rev. Neurosci., 4, 739, 10.1038/nrn1198

Doron, 2017, Timed synaptic inhibition shapes NMDA spikes, influencing local dendritic processing and global I/O properties of cortical neurons, Cell Rep., 21, 1550, 10.1016/j.celrep.2017.10.035

Druckmann, 2007, A novel multiple objective optimization framework for constraining conductance-based neuron models by experimental data, Front. Neurosci., 1, 7, 10.3389/neuro.01.1.1.001.2007

Egger, 2014, Generation of dense statistical connectomes from sparse morphological data, Front. Neuroanat., 8, 129, 10.3389/fnana.2014.00129

Elston, 2001, The pyramidal cell in cognition: a comparative study in human and monkey, J. Neurosci., 21, RC163, 10.1523/JNEUROSCI.21-17-j0002.2001

Eyal, 2014, Dendrites impact the encoding capabilities of the axon, J. Neurosci., 34, 8063, 10.1523/JNEUROSCI.5431-13.2014

Eyal, 2016, Unique membrane properties and enhanced signal processing in human neocortical neurons, Elife, 5, e16553, 10.7554/eLife.16553

Farinella, 2014, Glutamate-bound NMDARs arising from in vivo-like network activity extend spatio-temporal integration in a L5 cortical pyramidal cell model, PLoS Comput. Biol., 10, e1003590, 10.1371/journal.pcbi.1003590

Feldmeyer, 2006, Efficacy and connectivity of intracolumnar pairs of layer 2/3 pyramidal cells in the barrel cortex of juvenile rats, J. Physiol., 575, 583, 10.1113/jphysiol.2006.105106

Feldmeyer, 2002, Synaptic connections between layer 4 spiny neurone-layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: physiology and anatomy of interlaminar signalling within a cortical column, J. Physiol., 538, 803, 10.1113/jphysiol.2001.012959

Garey, 2006, Brodmann's ‘Localisation in the Cerebral Cortex

Harnett, 2012, Synaptic amplification by dendritic spines enhances input cooperativity, Nature, 491, 599, 10.1038/nature11554

Hawrylycz, 2016, Inferring cortical function in the mouse visual system through large-scale systems neuroscience, Proc. Natl. Acad. Sci., 113, 7337, 10.1073/pnas.1512901113

Hay, 2011, Models of neocortical layer 5b pyramidal cells capturing a wide range of dendritic and perisomatic active properties, PLoS Comput. Biol., 7, e1002107, 10.1371/journal.pcbi.1002107

Hay, 2013, Preserving axosomatic spiking features despite diverse dendritic morphology, J. Neurophysiol., 109, 2972, 10.1152/jn.00048.2013

Hay, 2014, Dendritic excitability and gain control in recurrent cortical microcircuits, Cereb. Cortex, 25, 3561, 10.1093/cercor/bhu200

Herz, 2006, Modeling single-neuron dynamics and computations: a balance of detail and abstraction, Science, 314, 80, 10.1126/science.1127240

Jadi, 2014, An augmented two-layer model captures nonlinear analog spatial integration effects in pyramidal neuron dendrites, Proc. IEEE, 102, 782, 10.1109/JPROC.2014.2312671

Jahr, 1990, Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics, J. Neurosci., 10, 3178, 10.1523/JNEUROSCI.10-09-03178.1990

Kasthuri, 2015, Saturated reconstruction of a volume of neocortex, Cell, 162, 648, 10.1016/j.cell.2015.06.054

Koch, 2016, Big science, team science, and open science for neuroscience, Neuron, 92, 612, 10.1016/j.neuron.2016.10.019

Koch, 1982, Retinal ganglion cells: a functional interpretation of dendritic morphology, Philos. Trans. R. Soc. B Biol. Sci., 298, 227, 10.1098/rstb.1982.0084

Koch, 2000, The role of single neurons in information processing, Nat. Neurosci., 3, 1171, 10.1038/81444

Köhling, 2006, Methodological approaches to exploring epileptic disorders in the human brain in vitro, J. Neurosci. Methods, 155, 1, 10.1016/j.jneumeth.2006.04.009

Kole, 2012, Signal processing in the axon initial segment, Neuron, 73, 235, 10.1016/j.neuron.2012.01.007

Kwon, 2017, Attenuation of synaptic potentials in dendritic spines, Cell Rep., 20, 1100, 10.1016/j.celrep.2017.07.012

Larkum, 2009, Synaptic integration in tuft dendrites of layer 5 pyramidal neurons: a new unifying principle, Science, 325, 756, 10.1126/science.1171958

Larkum, 1999, A new cellular mechanism for coupling inputs arriving at different cortical layers, Nature, 398, 338, 10.1038/18686

Lavzin, 2012, Nonlinear dendritic processing determines angular tuning of barrel cortex neurons in vivo, Nature, 490, 397, 10.1038/nature11451

Lein, 2017, The promise of spatial transcriptomics for neuroscience in the era of molecular cell typing, Science, 358, 64, 10.1126/science.aan6827

Magee, 2000, Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons, Nat. Neurosci., 3, 895, 10.1038/78800

Major, 2013, Active properties of neocortical pyramidal neuron dendrites, Annu. Rev. Neurosci., 36, 1, 10.1146/annurev-neuro-062111-150343

Markram, , Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex, J. Physiol., 500, 409, 10.1113/jphysiol.1997.sp022031

Markram, , Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs, Science, 275, 213, 10.1126/science.275.5297.213

Markram, 2015, Reconstruction and simulation of neocortical microcircuitry, Cell, 163, 456, 10.1016/j.cell.2015.09.029

Martin, 2016, The BRAIN initiative: building, strengthening, and sustaining, Neuron, 92, 570, 10.1016/j.neuron.2016.10.039

McCulloch, 1943, A logical calculus of the ideas immanent in nervous activity, Bull. Math. Biophys., 5, 115, 10.1007/BF02478259

Mel, 1992, NMDA-based pattern discrimination in a modeled cortical neuron, Neural Comput., 4, 502, 10.1162/neco.1992.4.4.502

Mel, 2017, Synaptic plasticity in dendrites: complications and coping strategies, Curr. Opin. Neurobiol., 43, 177, 10.1016/j.conb.2017.03.012

Mohan, 2015, Dendritic and axonal architecture of individual pyramidal neurons across layers of adult human neocortex, Cereb. Cortex, 25, 4839, 10.1093/cercor/bhv188

Molnár, 2016, Human pyramidal to interneuron synapses are mediated by multi-vesicular release and multiple docked vesicles, Elife, 5, e18167, 10.7554/eLife.18167

Palmer, 2014, NMDA spikes enhance action potential generation during sensory input, Nat. Neurosci., 17, 383, 10.1038/nn.3646

Palmer, 2009, Membrane potential changes in dendritic spines during action potentials and synaptic input, J. Neurosci., 29, 6897, 10.1523/JNEUROSCI.5847-08.2009

Poirazi, , Arithmetic of subthreshold synaptic summation in a model CA1 pyramidal cell, Neuron, 37, 977, 10.1016/S0896-6273(03)00148-X

Poirazi, , Pyramidal neuron as two-layer neural network, Neuron, 37, 989, 10.1016/S0896-6273(03)00149-1

Poirazi, 2001, Impact of active dendrites and structural plasticity on the memory capacity of neural tissue, Neuron, 29, 779, 10.1016/S0896-6273(01)00252-5

Polsky, 2004, Computational subunits in thin dendrites of pyramidal cells, Nat. Neurosci., 7, 621, 10.1038/nn1253

Poo, 2016, China Brain Project: basic neuroscience, brain diseases, and brain-inspired computing, Neuron, 92, 591, 10.1016/j.neuron.2016.10.050

Popovic, 2015, Electrical behaviour of dendritic spines as revealed by voltage imaging, Nat. Commun., 6, 8436, 10.1038/ncomms9436

Rall, 1959, Branching dendritic trees and motoneuron membrane resistivity, Exp. Neurol., 1, 491, 10.1016/0014-4886(59)90046-9

Rall, 1964, Theoretical significance of dendritic trees for neuronal input-output relations, Neural Theory Model, 73

Rall, 1967, Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input, J. Neurophysiol., 30, 1138, 10.1152/jn.1967.30.5.1138

Rall, 1969, Time constants and electrotonic length of membrane cylinders and neurons, Biophys. J., 9, 1483, 10.1016/S0006-3495(69)86467-2

Rall, 1967, Dendritic location of synapses and possible mechanisms for the monosynaptic EPSP in motoneurons, J. Neurophysiol., 30, 884, 10.1152/jn.1967.30.5.1169

Ranjan, 2011, Channelpedia: an integrative and interactive database for ion channels, Front. Neuroinform., 5, 36, 10.3389/fninf.2011.00036

Rapp, 1992, The impact of parallel fiber background activity on the cable properties of cerebellar Purkinje cells, Neural Comput., 4, 518, 10.1162/neco.1992.4.4.518

Rhodes, 2006, The properties and implications of NMDA spikes in neocortical pyramidal cells, J. Neurosci., 26, 6704, 10.1523/JNEUROSCI.3791-05.2006

Sarid, 2007, Modeling a layer 4-to-layer 2/3 module of a single column in rat neocortex: interweaving in vitro and in vivo experimental observations, Proc. Natl. Acad. Sci. U.S.A., 104, 16353, 10.1073/pnas.0707853104

Sarid, 2013, Contribution of intracolumnar layer 2/3-to-layer 2/3 excitatory connections in shaping the response to whisker deflection in rat barrel cortex, Cereb. Cortex, 25, 849, 10.1093/cercor/bht268

Schiller, 2000, NMDA spikes in basal dendrites of cortical pyramidal neurons, Nature, 404, 285, 10.1038/35005094

Schmidt-Hieber, 2017, Active dendritic integration as a mechanism for robust and precise grid cell firing, Nat. Neurosci., 20, 1114, 10.1038/nn.4582

Segev, 1995, Electrical consequences of spine dimensions in a model of a cortical spiny stellate cell completely reconstructed from serial thin sections, J. Comput. Neurosci., 2, 117, 10.1007/BF00961883

Shalev-Shwartz, 2014, Understanding Machine Learning: From Theory to Algorithms, 10.1017/CBO9781107298019

Shen, 1999, Computational analysis of action potential initiation in mitral cell soma and dendrites based on dual patch recordings, J. Neurophysiol., 82, 3006, 10.1152/jn.1999.82.6.3006

Shimizu, 2000, NMDA receptor-dependent synaptic reinforcement as a crucial process for memory consolidation, Science, 290, 1170, 10.1126/science.290.5494.1170

Smith, 2013, Dendritic spikes enhance stimulus selectivity in cortical neurons in vivo, Nature, 503, 115, 10.1038/nature12600

Spruston, 2008, Pyramidal neurons: dendritic structure and synaptic integration, Nat. Rev. Neurosci., 9, 206, 10.1038/nrn2286

Stuart, 1994, Active propagation of somatic action potentials into neocortical pyramidal cell dendrites, Nature, 367, 69, 10.1038/367069a0

Stuart, 2016, Dendrites, 10.1093/acprof:oso/9780198745273.001.0001

Svoboda, 1996, Direct measurement of coupling between dendritic spines and shafts, Science, 272, 716, 10.1126/science.272.5262.716

Szabadics, 2006, Excitatory effect of GABAergic axo-axonic cells in cortical microcircuits, Science, 311, 233, 10.1126/science.1121325

Takahashi, 2016, Active cortical dendrites modulate perception, Science, 354, 1587, 10.1126/science.aah6066

Testa-Silva, 2010, Human synapses show a wide temporal window for spike-timing-dependent plasticity, Front. Synaptic Neurosci., 2, 12, 10.3389/fnsyn.2010.00012

Testa-Silva, 2014, High bandwidth synaptic communication and frequency tracking in human neocortex, PLoS Biol., 12, e1002007, 10.1371/journal.pbio.1002007

Tian, 2014, Molecular identity of axonal sodium channels in human cortical pyramidal cells, Front. Cell. Neurosci., 8, 297, 10.3389/fncel.2014.00297

Tønnesen, 2014, Spine neck plasticity regulates compartmentalization of synapses, Nat. Neurosci., 17, 678, 10.1038/nn.3682

Varga, 2015, Molecular and electrophysiological characterization of GABAergic interneurons expressing the transcription factor COUP-TFII in the adult human temporal cortex, Cereb. Cortex, 25, 4430, 10.1093/cercor/bhv045

Verhoog, 2013, Mechanisms underlying the rules for associative plasticity at adult human neocortical synapses, J. Neurosci., 33, 17197, 10.1523/JNEUROSCI.3158-13.2013

Wuarin, 1992, Single-electrode voltage-clamp analysis of the N-methyl-D-aspartate component of synaptic responses in neocortical slices from children with intractable epilepsy, J. Neurophysiol., 67, 84, 10.1152/jn.1992.67.1.84