Human Cortical Pyramidal Neurons: From Spines to Spikes via Models
Tóm tắt
Từ khóa
Tài liệu tham khảo
Alonso-Nanclares, 2008, Gender differences in human cortical synaptic density, Proc. Natl. Acad. Sci. U.S.A., 105, 14615, 10.1073/pnas.0803652105
Amunts, 2016, The human brain project: creating a European research infrastructure to decode the human brain, Neuron, 92, 574, 10.1016/j.neuron.2016.10.046
Angelino, 2007, Excitability constraints on voltage-gated sodium channels, PLoS Comput. Biol., 3, e177, 10.1371/journal.pcbi.0030177
Araya, 2014, Activity-dependent dendritic spine neck changes are correlated with synaptic strength, Proc. Natl. Acad. Sci. U.S.A., 111, E2895, 10.1073/pnas.1321869111
Arellano, 2007, Non-synaptic dendritic spines in neocortex, Neuroscience, 145, 464, 10.1016/j.neuroscience.2006.12.015
Avoli, 2005, Cellular and molecular mechanisms of epilepsy in the human brain, Prog. Neurobiol., 77, 166, 10.1016/j.pneurobio.2005.09.006
Ballesteros-Yáñez, 2006, Density and morphology of dendritic spines in mouse neocortex, Neuroscience, 138, 403, 10.1016/j.neuroscience.2005.11.038
Benavides-Piccione, 2005, Catecholaminergic innervation of pyramidal neurons in the human temporal cortex, Cereb. Cortex, 15, 1584, 10.1093/cercor/bhi036
Benavides-Piccione, 2002, Cortical area and species differences in dendritic spine morphology, J. Neurocytol., 31, 337, 10.1023/A:1024134312173
Benavides-Piccione, 2013, Age-based comparison of human dendritic spine structure using complete three-dimensional reconstructions, Cereb. Cortex, 23, 1798, 10.1093/cercor/bhs154
Blazquez-Llorca, 2013, FIB/SEM technology and Alzheimer's disease: three-dimensional analysis of human cortical synapses, J. Alzheimers Dis., 34, 995, 10.3233/JAD-122038
Bono, 2017, Modelling plasticity in dendrites: from single cells to networks, Curr. Opin. Neurobiol., 46, 136, 10.1016/j.conb.2017.08.013
Brent, 1976, A new algorithm for minimizing a function of several variables without calculating derivatives, Algorithms for Minimization without Derivatives, 200
Cartailler, 2018, Deconvolution of voltage sensor time series and electro-diffusion modeling reveal the role of spine geometry in controlling synaptic strength, Neuron, 97, 1126, 10.1016/j.neuron.2018.01.034
DeFelipe, 2015, The anatomical problem posed by brain complexity and size: a potential solution, Front. Neuroanat., 9, 104, 10.3389/fnana.2015.00104
DeFelipe, 2002, Microstructure of the neocortex: comparative aspects, J. Neurocytol., 31, 299, 10.1023/A:1024130211265
DeFelipe, 1992, The pyramidal neuron of the cerebral cortex: morphological and chemical characteristics of the synaptic inputs, Prog Neurobiol., 39, 563, 10.1016/0301-0082(92)90015-7
Deitcher, 2017, Comprehensive morpho-electrotonic analysis shows 2 distinct classes of L2 and L3 pyramidal neurons in human temporal cortex, Cereb. Cortex, 27, 5398, 10.1093/cercor/bhx226
Del Río, 1994, A study of SMI 32-stained pyramidal cells, parvalbumin-immunoreactive chandelier cells, and presumptive thalamocortical axons in the human temproal neocortex, J. Comp. Neurol., 342, 389, 10.1002/cne.903420307
Destexhe, 2003, The high-conductance state of neocortical neurons in vivo, Nat. Rev. Neurosci., 4, 739, 10.1038/nrn1198
Doron, 2017, Timed synaptic inhibition shapes NMDA spikes, influencing local dendritic processing and global I/O properties of cortical neurons, Cell Rep., 21, 1550, 10.1016/j.celrep.2017.10.035
Druckmann, 2007, A novel multiple objective optimization framework for constraining conductance-based neuron models by experimental data, Front. Neurosci., 1, 7, 10.3389/neuro.01.1.1.001.2007
Egger, 2014, Generation of dense statistical connectomes from sparse morphological data, Front. Neuroanat., 8, 129, 10.3389/fnana.2014.00129
Elston, 2001, The pyramidal cell in cognition: a comparative study in human and monkey, J. Neurosci., 21, RC163, 10.1523/JNEUROSCI.21-17-j0002.2001
Eyal, 2014, Dendrites impact the encoding capabilities of the axon, J. Neurosci., 34, 8063, 10.1523/JNEUROSCI.5431-13.2014
Eyal, 2016, Unique membrane properties and enhanced signal processing in human neocortical neurons, Elife, 5, e16553, 10.7554/eLife.16553
Farinella, 2014, Glutamate-bound NMDARs arising from in vivo-like network activity extend spatio-temporal integration in a L5 cortical pyramidal cell model, PLoS Comput. Biol., 10, e1003590, 10.1371/journal.pcbi.1003590
Feldmeyer, 2006, Efficacy and connectivity of intracolumnar pairs of layer 2/3 pyramidal cells in the barrel cortex of juvenile rats, J. Physiol., 575, 583, 10.1113/jphysiol.2006.105106
Feldmeyer, 2002, Synaptic connections between layer 4 spiny neurone-layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: physiology and anatomy of interlaminar signalling within a cortical column, J. Physiol., 538, 803, 10.1113/jphysiol.2001.012959
Garey, 2006, Brodmann's ‘Localisation in the Cerebral Cortex
Harnett, 2012, Synaptic amplification by dendritic spines enhances input cooperativity, Nature, 491, 599, 10.1038/nature11554
Hawrylycz, 2016, Inferring cortical function in the mouse visual system through large-scale systems neuroscience, Proc. Natl. Acad. Sci., 113, 7337, 10.1073/pnas.1512901113
Hay, 2011, Models of neocortical layer 5b pyramidal cells capturing a wide range of dendritic and perisomatic active properties, PLoS Comput. Biol., 7, e1002107, 10.1371/journal.pcbi.1002107
Hay, 2013, Preserving axosomatic spiking features despite diverse dendritic morphology, J. Neurophysiol., 109, 2972, 10.1152/jn.00048.2013
Hay, 2014, Dendritic excitability and gain control in recurrent cortical microcircuits, Cereb. Cortex, 25, 3561, 10.1093/cercor/bhu200
Herz, 2006, Modeling single-neuron dynamics and computations: a balance of detail and abstraction, Science, 314, 80, 10.1126/science.1127240
Jadi, 2014, An augmented two-layer model captures nonlinear analog spatial integration effects in pyramidal neuron dendrites, Proc. IEEE, 102, 782, 10.1109/JPROC.2014.2312671
Jahr, 1990, Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics, J. Neurosci., 10, 3178, 10.1523/JNEUROSCI.10-09-03178.1990
Kasthuri, 2015, Saturated reconstruction of a volume of neocortex, Cell, 162, 648, 10.1016/j.cell.2015.06.054
Koch, 2016, Big science, team science, and open science for neuroscience, Neuron, 92, 612, 10.1016/j.neuron.2016.10.019
Koch, 1982, Retinal ganglion cells: a functional interpretation of dendritic morphology, Philos. Trans. R. Soc. B Biol. Sci., 298, 227, 10.1098/rstb.1982.0084
Koch, 2000, The role of single neurons in information processing, Nat. Neurosci., 3, 1171, 10.1038/81444
Köhling, 2006, Methodological approaches to exploring epileptic disorders in the human brain in vitro, J. Neurosci. Methods, 155, 1, 10.1016/j.jneumeth.2006.04.009
Kole, 2012, Signal processing in the axon initial segment, Neuron, 73, 235, 10.1016/j.neuron.2012.01.007
Kwon, 2017, Attenuation of synaptic potentials in dendritic spines, Cell Rep., 20, 1100, 10.1016/j.celrep.2017.07.012
Larkum, 2009, Synaptic integration in tuft dendrites of layer 5 pyramidal neurons: a new unifying principle, Science, 325, 756, 10.1126/science.1171958
Larkum, 1999, A new cellular mechanism for coupling inputs arriving at different cortical layers, Nature, 398, 338, 10.1038/18686
Lavzin, 2012, Nonlinear dendritic processing determines angular tuning of barrel cortex neurons in vivo, Nature, 490, 397, 10.1038/nature11451
Lein, 2017, The promise of spatial transcriptomics for neuroscience in the era of molecular cell typing, Science, 358, 64, 10.1126/science.aan6827
Magee, 2000, Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons, Nat. Neurosci., 3, 895, 10.1038/78800
Major, 2013, Active properties of neocortical pyramidal neuron dendrites, Annu. Rev. Neurosci., 36, 1, 10.1146/annurev-neuro-062111-150343
Markram, , Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex, J. Physiol., 500, 409, 10.1113/jphysiol.1997.sp022031
Markram, , Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs, Science, 275, 213, 10.1126/science.275.5297.213
Markram, 2015, Reconstruction and simulation of neocortical microcircuitry, Cell, 163, 456, 10.1016/j.cell.2015.09.029
Martin, 2016, The BRAIN initiative: building, strengthening, and sustaining, Neuron, 92, 570, 10.1016/j.neuron.2016.10.039
McCulloch, 1943, A logical calculus of the ideas immanent in nervous activity, Bull. Math. Biophys., 5, 115, 10.1007/BF02478259
Mel, 1992, NMDA-based pattern discrimination in a modeled cortical neuron, Neural Comput., 4, 502, 10.1162/neco.1992.4.4.502
Mel, 2017, Synaptic plasticity in dendrites: complications and coping strategies, Curr. Opin. Neurobiol., 43, 177, 10.1016/j.conb.2017.03.012
Mohan, 2015, Dendritic and axonal architecture of individual pyramidal neurons across layers of adult human neocortex, Cereb. Cortex, 25, 4839, 10.1093/cercor/bhv188
Molnár, 2016, Human pyramidal to interneuron synapses are mediated by multi-vesicular release and multiple docked vesicles, Elife, 5, e18167, 10.7554/eLife.18167
Palmer, 2014, NMDA spikes enhance action potential generation during sensory input, Nat. Neurosci., 17, 383, 10.1038/nn.3646
Palmer, 2009, Membrane potential changes in dendritic spines during action potentials and synaptic input, J. Neurosci., 29, 6897, 10.1523/JNEUROSCI.5847-08.2009
Poirazi, , Arithmetic of subthreshold synaptic summation in a model CA1 pyramidal cell, Neuron, 37, 977, 10.1016/S0896-6273(03)00148-X
Poirazi, , Pyramidal neuron as two-layer neural network, Neuron, 37, 989, 10.1016/S0896-6273(03)00149-1
Poirazi, 2001, Impact of active dendrites and structural plasticity on the memory capacity of neural tissue, Neuron, 29, 779, 10.1016/S0896-6273(01)00252-5
Polsky, 2004, Computational subunits in thin dendrites of pyramidal cells, Nat. Neurosci., 7, 621, 10.1038/nn1253
Poo, 2016, China Brain Project: basic neuroscience, brain diseases, and brain-inspired computing, Neuron, 92, 591, 10.1016/j.neuron.2016.10.050
Popovic, 2015, Electrical behaviour of dendritic spines as revealed by voltage imaging, Nat. Commun., 6, 8436, 10.1038/ncomms9436
Rall, 1959, Branching dendritic trees and motoneuron membrane resistivity, Exp. Neurol., 1, 491, 10.1016/0014-4886(59)90046-9
Rall, 1964, Theoretical significance of dendritic trees for neuronal input-output relations, Neural Theory Model, 73
Rall, 1967, Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input, J. Neurophysiol., 30, 1138, 10.1152/jn.1967.30.5.1138
Rall, 1969, Time constants and electrotonic length of membrane cylinders and neurons, Biophys. J., 9, 1483, 10.1016/S0006-3495(69)86467-2
Rall, 1967, Dendritic location of synapses and possible mechanisms for the monosynaptic EPSP in motoneurons, J. Neurophysiol., 30, 884, 10.1152/jn.1967.30.5.1169
Ranjan, 2011, Channelpedia: an integrative and interactive database for ion channels, Front. Neuroinform., 5, 36, 10.3389/fninf.2011.00036
Rapp, 1992, The impact of parallel fiber background activity on the cable properties of cerebellar Purkinje cells, Neural Comput., 4, 518, 10.1162/neco.1992.4.4.518
Rhodes, 2006, The properties and implications of NMDA spikes in neocortical pyramidal cells, J. Neurosci., 26, 6704, 10.1523/JNEUROSCI.3791-05.2006
Sarid, 2007, Modeling a layer 4-to-layer 2/3 module of a single column in rat neocortex: interweaving in vitro and in vivo experimental observations, Proc. Natl. Acad. Sci. U.S.A., 104, 16353, 10.1073/pnas.0707853104
Sarid, 2013, Contribution of intracolumnar layer 2/3-to-layer 2/3 excitatory connections in shaping the response to whisker deflection in rat barrel cortex, Cereb. Cortex, 25, 849, 10.1093/cercor/bht268
Schiller, 2000, NMDA spikes in basal dendrites of cortical pyramidal neurons, Nature, 404, 285, 10.1038/35005094
Schmidt-Hieber, 2017, Active dendritic integration as a mechanism for robust and precise grid cell firing, Nat. Neurosci., 20, 1114, 10.1038/nn.4582
Segev, 1995, Electrical consequences of spine dimensions in a model of a cortical spiny stellate cell completely reconstructed from serial thin sections, J. Comput. Neurosci., 2, 117, 10.1007/BF00961883
Shalev-Shwartz, 2014, Understanding Machine Learning: From Theory to Algorithms, 10.1017/CBO9781107298019
Shen, 1999, Computational analysis of action potential initiation in mitral cell soma and dendrites based on dual patch recordings, J. Neurophysiol., 82, 3006, 10.1152/jn.1999.82.6.3006
Shimizu, 2000, NMDA receptor-dependent synaptic reinforcement as a crucial process for memory consolidation, Science, 290, 1170, 10.1126/science.290.5494.1170
Smith, 2013, Dendritic spikes enhance stimulus selectivity in cortical neurons in vivo, Nature, 503, 115, 10.1038/nature12600
Spruston, 2008, Pyramidal neurons: dendritic structure and synaptic integration, Nat. Rev. Neurosci., 9, 206, 10.1038/nrn2286
Stuart, 1994, Active propagation of somatic action potentials into neocortical pyramidal cell dendrites, Nature, 367, 69, 10.1038/367069a0
Svoboda, 1996, Direct measurement of coupling between dendritic spines and shafts, Science, 272, 716, 10.1126/science.272.5262.716
Szabadics, 2006, Excitatory effect of GABAergic axo-axonic cells in cortical microcircuits, Science, 311, 233, 10.1126/science.1121325
Takahashi, 2016, Active cortical dendrites modulate perception, Science, 354, 1587, 10.1126/science.aah6066
Testa-Silva, 2010, Human synapses show a wide temporal window for spike-timing-dependent plasticity, Front. Synaptic Neurosci., 2, 12, 10.3389/fnsyn.2010.00012
Testa-Silva, 2014, High bandwidth synaptic communication and frequency tracking in human neocortex, PLoS Biol., 12, e1002007, 10.1371/journal.pbio.1002007
Tian, 2014, Molecular identity of axonal sodium channels in human cortical pyramidal cells, Front. Cell. Neurosci., 8, 297, 10.3389/fncel.2014.00297
Tønnesen, 2014, Spine neck plasticity regulates compartmentalization of synapses, Nat. Neurosci., 17, 678, 10.1038/nn.3682
Varga, 2015, Molecular and electrophysiological characterization of GABAergic interneurons expressing the transcription factor COUP-TFII in the adult human temporal cortex, Cereb. Cortex, 25, 4430, 10.1093/cercor/bhv045
Verhoog, 2013, Mechanisms underlying the rules for associative plasticity at adult human neocortical synapses, J. Neurosci., 33, 17197, 10.1523/JNEUROSCI.3158-13.2013