Human Argonaute 2 Has Diverse Reaction Pathways on Target RNAs

Molecular Cell - Tập 59 Số 1 - Trang 117-124 - 2015
Myung Hyun Jo1,2,3, Soochul Shin1,2,3, Seung‐Ryoung Jung1,2,3, Eunji Kim4, Ji‐Joon Song4, Sungchul Hohng5,1,2,3
1Department of Physics and Astronomy, Seoul National University, Seoul 151-747, Republic of Korea
2Institute of Applied Physics, Seoul National University, Seoul 151-747, Republic of Korea
3National Center of Creative Research Initiatives, Seoul National University, Seoul 151-747, Republic of Korea
4Department of Biological Sciences, KI for the BioCentury, KAIST, Daejeon 305-338, Republic of Korea
5Department of Biophysics and Chemical Biology, Seoul National University, Seoul 151-747, Republic of Korea

Tóm tắt

Từ khóa


Tài liệu tham khảo

Agrawal, 2003, RNA interference: biology, mechanism, and applications, Microbiol. Mol. Biol. Rev., 67, 657, 10.1128/MMBR.67.4.657-685.2003

Brodersen, 2009, Revisiting the principles of microRNA target recognition and mode of action, Nat. Rev. Mol. Cell Biol., 10, 141, 10.1038/nrm2619

Chi, 2012, An alternative mode of microRNA target recognition, Nat. Struct. Mol. Biol., 19, 321, 10.1038/nsmb.2230

Davis, 2005, RNAi-mediated allelic trans-interaction at the imprinted Rtl1/Peg11 locus, Curr. Biol., 15, 743, 10.1016/j.cub.2005.02.060

De, 2013, Highly complementary target RNAs promote release of guide RNAs from human Argonaute2, Mol. Cell, 50, 344, 10.1016/j.molcel.2013.04.001

Elbashir, 2001, RNA interference is mediated by 21- and 22-nucleotide RNAs, Genes Dev., 15, 188, 10.1101/gad.862301

Elkayam, 2012, The structure of human argonaute-2 in complex with miR-20a, Cell, 150, 100, 10.1016/j.cell.2012.05.017

Fecko, 2007, Comparison of femtosecond laser and continuous wave UV sources for protein-nucleic acid crosslinking, Photochem. Photobiol., 83, 1394, 10.1111/j.1751-1097.2007.00179.x

Hamilton, 1999, A species of small antisense RNA in posttranscriptional gene silencing in plants, Science, 286, 950, 10.1126/science.286.5441.950

Hammond, 2000, An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells, Nature, 404, 293, 10.1038/35005107

Huntzinger, 2011, Gene silencing by microRNAs: contributions of translational repression and mRNA decay, Nat. Rev. Genet., 12, 99, 10.1038/nrg2936

Iwakawa, 2013, Molecular insights into microRNA-mediated translational repression in plants, Mol. Cell, 52, 591, 10.1016/j.molcel.2013.10.033

Jung, 2013, Dynamic anchoring of the 3′-end of the guide strand controls the target dissociation of Argonaute-guide complex, J. Am. Chem. Soc., 135, 16865, 10.1021/ja403138d

Künne, 2014, Planting the seed: target recognition of short guide RNAs, Trends Microbiol., 22, 74, 10.1016/j.tim.2013.12.003

Lee, 1993, The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14, Cell, 75, 843, 10.1016/0092-8674(93)90529-Y

Lee, 2010, Single-molecule three-color FRET with both negligible spectral overlap and long observation time, PLoS ONE, 5, e12270, 10.1371/journal.pone.0012270

Lewis, 2005, Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets, Cell, 120, 15, 10.1016/j.cell.2004.12.035

Lim, 2005, Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs, Nature, 433, 769, 10.1038/nature03315

Liu, 2004, Argonaute2 is the catalytic engine of mammalian RNAi, Science, 305, 1437, 10.1126/science.1102513

McQuarrie, 1997

Meister, 2004, Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs, Mol. Cell, 15, 185, 10.1016/j.molcel.2004.07.007

Phillips, 2007, The role of small RNAs in abiotic stress, FEBS Lett., 581, 3592, 10.1016/j.febslet.2007.04.007

Rand, 2005, Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation, Cell, 123, 621, 10.1016/j.cell.2005.10.020

Rivas, 2005, Purified Argonaute2 and an siRNA form recombinant human RISC, Nat. Struct. Mol. Biol., 12, 340, 10.1038/nsmb918

Roy, 2008, A practical guide to single-molecule FRET, Nat. Methods, 5, 507, 10.1038/nmeth.1208

Schirle, 2012, The crystal structure of human Argonaute2, Science, 336, 1037, 10.1126/science.1221551

Schirle, 2014, Structural basis for microRNA targeting, Science, 346, 608, 10.1126/science.1258040

Tam, 2008, Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes, Nature, 453, 534, 10.1038/nature06904

Thomas, 2010, Desperately seeking microRNA targets, Nat. Struct. Mol. Biol., 17, 1169, 10.1038/nsmb.1921

Vagin, 2006, A distinct small RNA pathway silences selfish genetic elements in the germline, Science, 313, 320, 10.1126/science.1129333

Ventura, 2008, Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters, Cell, 132, 875, 10.1016/j.cell.2008.02.019

Wang, 2008, Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex, Nature, 456, 921, 10.1038/nature07666

Watanabe, 2008, Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes, Nature, 453, 539, 10.1038/nature06908

Wightman, 1993, Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans, Cell, 75, 855, 10.1016/0092-8674(93)90530-4

Wu, 2004, A novel approach for evaluating the efficiency of siRNAs on protein levels in cultured cells, Nucleic Acids Res., 32, e17, 10.1093/nar/gnh010

Yekta, 2004, MicroRNA-directed cleavage of HOXB8 mRNA, Science, 304, 594, 10.1126/science.1097434